{"id":186304,"date":"2024-10-19T11:41:48","date_gmt":"2024-10-19T11:41:48","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-vv-40-2018\/"},"modified":"2024-10-25T04:06:00","modified_gmt":"2024-10-25T04:06:00","slug":"asme-vv-40-2018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-vv-40-2018\/","title":{"rendered":"ASME VV 40 2018"},"content":{"rendered":"

This Standard provides a framework for assessing the relevance and adequacy of completed V&V activities that establish credibility of a computational model. The credibility should be commensurate with the degree to which the computational model is relied on as evidence of device performance, functional characteristic, and\/or safety to support a decision, and the consequences of that decision being incorrect.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
6<\/td>\nFOREWORD <\/td>\n<\/tr>\n
8<\/td>\nASME V&V Committee Roster <\/td>\n<\/tr>\n
9<\/td>\nCORRESPONDENCE WITH THE V&V COMMITTEE <\/td>\n<\/tr>\n
12<\/td>\n1 EXECUTIVE SUMMARY
2 INTRODUCTION
2.1 Motivation <\/td>\n<\/tr>\n
13<\/td>\n2.2 Purpose
2.3 Scope
2.4 Overview of the Risk-Informed Credibility Assessment Framework
Figure 2.4-1 Process Diagram of the Risk-Informed Credibility Assessment Framework <\/td>\n<\/tr>\n
14<\/td>\n3 CONTEXT OF USE
4 MODEL RISK
4.1 Model Influence <\/td>\n<\/tr>\n
15<\/td>\n4.2 Decision Consequence
Figure 4.2-1 Schematic of How Model Influence and Decision Consequence Determine Model Risk <\/td>\n<\/tr>\n
16<\/td>\n5 MODEL CREDIBILITY
Tables
Table 5-1 Verification, Validation, and Applicability Activities and Their Associated Credibility Factors <\/td>\n<\/tr>\n
17<\/td>\n5.1 Verification
5.1.1 Code Verification <\/td>\n<\/tr>\n
18<\/td>\n5.1.2 Calculation Verification
5.2 Validation
5.2.1 Computational Model <\/td>\n<\/tr>\n
19<\/td>\n5.2.2 Comparator <\/td>\n<\/tr>\n
22<\/td>\n5.3 Applicability of the Validation Activities to the COU <\/td>\n<\/tr>\n
23<\/td>\n5.3.1 Relevance of the QOIs
5.3.2 Relevance of the Validation Activities to the COU
Figure 5.3-1 Illustrative Examples of Three COUs Relative to the Validation Points for a Two-Parameter (X1, X2) Computational Model <\/td>\n<\/tr>\n
24<\/td>\n6 THE PLAN
7 CREDIBILITY ASSESSMENT <\/td>\n<\/tr>\n
25<\/td>\nFigures
Figure 7-1 Example Workflow for Assessing Computational Model Credibility <\/td>\n<\/tr>\n
26<\/td>\n8 DOCUMENTATION AND EVIDENCE <\/td>\n<\/tr>\n
27<\/td>\nMANDATORY APPENDIX I REFERENCES <\/td>\n<\/tr>\n
28<\/td>\nMANDATORY APPENDIX II GLOSSARY <\/td>\n<\/tr>\n
30<\/td>\nTable A-1-1 A Sample PIRT
NONMANDATORY APPENDIX A PHENOMENA IDENTIFICATION AND RANKING TABLE
A-1 INTRODUCTION TO PIRT
A-2 COMPILING THE PIRT
A-2.1 Classification of Phenomena
A-2.2 Knowledge\/Confidence Levels <\/td>\n<\/tr>\n
31<\/td>\nTable A-2.2-1 An Example Gradation of Knowledge\/Confidence Level and Importance
Table A-2.2-2 A Sample PIRT Including a Mitigation Column
A-3 REFERENCES <\/td>\n<\/tr>\n
32<\/td>\nFigure B-1-1 Elements of the ASME V&V 40 Risk-Informed Credibility Assessment Framework Illustrated in Nonmandatory Appendix B
NONMANDATORY APPENDIX B EXAMPLES OF RISK-INFORMED CREDIBILITY ASSESSMENT CONCEPTS
B-1 INTRODUCTION
B-2 EXAMPLES <\/td>\n<\/tr>\n
33<\/td>\nTable B-1-1 Mapping of Examples to Selected Credibility Factors
Table B-1-2 Mapping of Examples to Device Type and Modeling Approach <\/td>\n<\/tr>\n
34<\/td>\nFigure B-2.1.1-1 Illustration of a Centrifugal Blood Pump Design
B-2.1 Example 1: Assessing Hemolysis in Centrifugal Blood Pumps <\/td>\n<\/tr>\n
36<\/td>\nFigure B-2.1.4.2-1 Model Risk Matrix for Example 1
Table B-2.1.4.2-1 Corresponding Risk Levels for the Credibility Factors That Address Rigor of Output Comparison and Agreement of Output Comparison, With the Addition of Validation Metric in Figure B-2.1.4.2-1 <\/td>\n<\/tr>\n
39<\/td>\nTable B-2.1.5.4-1 Credibility Factors Summary
B-2.2 Example 2: Predicting the Performance of Flow Diverters in the Treatment of Brain Aneurysms <\/td>\n<\/tr>\n
40<\/td>\nFigure B-2.2.1-1 An Example of a Flow Diverter Placed in a Parent Vessel With a Side-Wall Aneurysm
Figure B-2.2.1-2 The Flow Patterns Before and After the Placement of a Flow Diverter, Highlighting the Significant Reduction in Blood Flow Within the Aneurysm After Diverter Placement <\/td>\n<\/tr>\n
41<\/td>\nFigure B-2.2.4.2-1 Model Risk Matrix for Example 2 <\/td>\n<\/tr>\n
42<\/td>\nB-2.3 Example 3: Stability and Adjustability of Hospital Beds <\/td>\n<\/tr>\n
43<\/td>\nFigure B-2.3.1-1 Schematic of a Hospital Bed <\/td>\n<\/tr>\n
45<\/td>\nB-2.4 Example 4: Radiofrequency-Induced Temperature Rise in Patients During Magnetic Resonance Imaging <\/td>\n<\/tr>\n
46<\/td>\nFigure B-2.4.1-1 Physical Test Set-Up and Computational Model Representation of a Gel Phantom Inside an MRI <\/td>\n<\/tr>\n
48<\/td>\nB-2.5 Example 5: Evaluation of the Locking Mechanism Strength of a Posterior-Stabilized Total Knee Arthroplasty Design <\/td>\n<\/tr>\n
49<\/td>\nFigure B-2.5.1-1 Schematic of a Posterior-Stabilized TKA Assembly <\/td>\n<\/tr>\n
50<\/td>\nFigure B-2.5.3-1 Matrix of Proposed COUs for a Tibial Component Anterior Liftoff Model
Figure B-2.5.3.4-1 Potential Interactions Among Modeling, Testing, and Predicate Evaluation for COU4 <\/td>\n<\/tr>\n
51<\/td>\nFigure B-2.5.4-1 Impact of Benchtop Testing (BT) on Model Influence and Therefore Overall Model Risk <\/td>\n<\/tr>\n
53<\/td>\nFigure B-2.6.1-1 The ASTM Cage
B-2.6 Example 6: Interbody Fusion Devices <\/td>\n<\/tr>\n
54<\/td>\nFigure B-2.6.1-2 Typical Compressive Load-Displacement Plot of a Fusion Cage <\/td>\n<\/tr>\n
56<\/td>\nTable B-2.6.5.1.1-1 Model Risk Summary
Table B-2.6.5.1.1-2 System Configuration: Minimum Level of Credibility Needed for the COUs <\/td>\n<\/tr>\n
57<\/td>\nTable B-2.6.5.1.1-3 System Properties: Minimum Level of Credibility Needed for the COUs
Table B-2.6.5.1.2-1 Comparator Validation: Measurement Uncertainty <\/td>\n<\/tr>\n
58<\/td>\nTable B-2.6.5.1.3-1 Equivalency of Input Parameters
Table B-2.6.5.2-1 Relevance of the QOIs <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

ASME VV-40 – 2018 Assessing Credibility of Computational Modeling through Verification and Validation: Application to Medical Devices<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ASME<\/b><\/a><\/td>\n2018<\/td>\n61<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":186309,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2643],"product_tag":[],"class_list":{"0":"post-186304","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-asme","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/186304","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/186309"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=186304"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=186304"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=186304"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}