ASTM-D86 2011(Redline)
$38.35
D86-11b Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure (Redline)
Published By | Publication Date | Number of Pages |
ASTM | 2011 | 27 |
The basic test method of determining the boiling range of a petroleum product by performing a simple batch distillation has been in use as long as the petroleum industry has existed. It is one of the oldest test methods under the jurisdiction of ASTM Committee D02, dating from the time when it was still referred to as the Engler distillation. Since the test method has been in use for such an extended period, a tremendous number of historical data bases exist for estimating end-use sensitivity on products and processes.
The distillation (volatility) characteristics of hydrocarbons have an important effect on their safety and performance, especially in the case of fuels and solvents. The boiling range gives information on the composition, the properties, and the behavior of the fuel during storage and use. Volatility is the major determinant of the tendency of a hydrocarbon mixture to produce potentially explosive vapors.
The distillation characteristics are critically important for both automotive and aviation gasolines, affecting starting, warm-up, and tendency to vapor lock at high operating temperature or at high altitude, or both. The presence of high boiling point components in these and other fuels can significantly affect the degree of formation of solid combustion deposits.
Volatility, as it affects rate of evaporation, is an important factor in the application of many solvents, particularly those used in paints.
Distillation limits are often included in petroleum product specifications, in commercial contract agreements, process refinery/control applications, and for compliance to regulatory rules.
1. Scope
1.1 This test method covers the atmospheric distillation of petroleum products using a laboratory batch distillation unit to determine quantitatively the boiling range characteristics of such products as light and middle distillates, automotive spark-ignition engine fuels with or without oxygenates (see Note 1), aviation gasolines, aviation turbine fuels, diesel fuels, biodiesel blends up to 20 %, marine fuels, special petroleum spirits, naphthas, white spirits, kerosines, and Grades 1 and 2 burner fuels.
Note 1—An interlaboratory study was conducted in 2008 involving 11 different laboratories submitting 15 data sets and 15 different samples of ethanol-fuel blends containing 25 v%, 50 v%, and 75 v% ethanol. The results indicate that the repeatability limits of these samples are comparable or within the published repeatability of the method (with the exception of FBP of 75% ethanol-fuel blends). On this basis, it can be concluded that Test Method D86 is applicable to ethanol-fuel blends such as Ed75 and Ed85 (Specification D5798 ) or other ethanol-fuel blends with greater than 10 v% ethanol. See ASTM RR:D02-1694 for supporting data.
1.2 The test method is designed for the analysis of distillate fuels; it is not applicable to products containing appreciable quantities of residual material.
1.3 This test method covers both manual and automated instruments.
1.4 Unless otherwise noted, the values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.
1.5 WARNING Mercury has been designated by many regulatory agencies as a hazardous material that can cause central nervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA ’ s websitehttp://www.epa.gov/mercury/faq.htmfor additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
D97 Test Method for Pour Point of Petroleum Products D323 Test Method for Vapor Pressure of Petroleum Products (Reid Method) D4057 Practice for Manual Sampling of Petroleum and Petroleum Products D4175 Terminology Relating to Petroleum, Petroleum Products, and Lubricants D4177 Practice for Automatic Sampling of Petroleum and Petroleum Products D4953 Test Method for Vapor Pressure of Gasoline and Gasoline-Oxygenate Blends (Dry Method) D5190 Test Method for Vapor Pressure of Petroleum Products (Automatic Method) D5191 Test Method for Vapor Pressure of Petroleum Products (Mini Method) D5798 Specification for Ethanol Fuel Blends for Flexible-Fuel Automotive Spark-Ignition Engines D5842 Practice for Sampling and Handling of Fuels for Volatility Measurement D5949 Test Method for Pour Point of Petroleum Products (Automatic Pressure Pulsing Method) D5950 Test Method for Pour Point of Petroleum Products (Automatic Tilt Method) D5985 Test Method for Pour Point of Petroleum Products (Rotational Method) D6300 Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products and Lubricants E1 Specification for ASTM Liquid-in-Glass Thermometers E77 Test Method for Inspection and Verification of Thermometers E1272 Specification for Laboratory Glass Graduated Cylinders E1405 Specification for Laboratory Glass Distillation Flasks
Keywords
batch distillation; distillates; distillation; laboratory distillation; petroleum products; Atmospheric distillation; Batch distillation; Distillation–petroleum products; Laboratory distillation process; Petroleum products
ICS Code
ICS Number Code 75.080 (Petroleum products in general)
DOI: 10.1520/D0086-11B ASTM International is a member of CrossRef.
Citing ASTM Standards
[Back to Top]