BS ISO/IEC 5259-4:2024
$167.15
Artificial intelligence. Data quality for analytics and machine learning (ML) – Data quality process framework
Published By | Publication Date | Number of Pages |
BSI | 2024 | 38 |
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
7 | Foreword |
8 | Introduction |
9 | 1 Scope 2 Normative references 3 Terms and definitions |
11 | 4 Symbols and abbreviated terms 5 Data quality process principles 6 Data quality process framework 6.1 General |
13 | 6.2 Data quality planning |
14 | 6.3 Data quality evaluation 6.4 Data quality improvement 6.5 Data quality process validation |
15 | 6.6 Using the DQPF 7 Data quality process for ML 7.1 General |
16 | 7.2 Data requirements |
17 | 7.3 Data planning 7.4 Data acquisition |
18 | 7.5 Data preparation 7.5.1 General 7.5.2 Supervised ML 7.5.3 Unsupervised ML 7.5.4 Semi-supervised ML |
19 | 7.5.5 Dataset composition 7.5.6 Data labelling 7.5.7 Data annotation |
20 | 7.5.8 Data quality assessment |
21 | 7.5.9 Data quality improvement |
23 | 7.5.10 Data de-identification |
24 | 7.5.11 Data encoding. 7.6 Data provisioning 7.6.1 General 7.6.2 Supervised ML 7.6.3 Unsupervised ML 7.6.4 Semi-supervised ML 7.7 Data decommissioning |
25 | 8 Data labelling methods and process 8.1 General 8.2 Data labelling principles 8.3 Data labelling methods |
26 | 8.4 Data labelling process 8.4.1 General 8.4.2 Labelling specifications 8.4.3 Labelling participant roles |
27 | 8.4.4 Labelling tools or platforms 8.4.5 Labelling task establishment 8.4.6 Labelling task assignment |
28 | 8.4.7 Labelling process control 8.4.8 Labelling result quality checking 8.4.9 Labelling result revision |
29 | 9 Roles of participants 9.1 General 9.2 Data planner 9.3 Data originator 9.4 Data collector 9.5 Data engineer 9.6 Data holder 9.7 Data user |
30 | 10 Data quality process for semi-supervised ML 10.1 General 10.2 Data requirements 10.3 Data planning 10.4 Data acquisition 10.5 Data preparation 10.6 Data provisioning |
31 | 10.7 Data decommissioning 11 Data quality process for reinforcement learning 11.1 General 11.2 Data requirements 11.3 Data planning 11.4 Data acquisition 11.5 Data preparation 11.5.1 General process |
32 | 11.5.2 Data recording 11.6 Data provisioning 11.7 Data decommissioning 12 Data quality process for analytics 12.1 General 12.2 Data requirements 12.3 Data planning |
33 | 12.4 Data acquisition 12.4.1 General 12.4.2 Data loading 12.4.3 Data storage 12.5 Data preparation 12.5.1 General 12.5.2 Data cleaning 12.5.3 Data transformation |
34 | 12.5.4 Data aggregation 12.5.5 Data quality assessment 12.5.6 Data quality improvement |
35 | 12.6 Data provisioning 12.7 Data decommissioning |
36 | Bibliography |