{"id":26415,"date":"2024-10-17T02:30:57","date_gmt":"2024-10-17T02:30:57","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-454-06-2006\/"},"modified":"2024-10-24T13:46:15","modified_gmt":"2024-10-24T13:46:15","slug":"fema-454-06-2006","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-454-06-2006\/","title":{"rendered":"FEMA 454 06 2006"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | FEMA454: DESIGNING FOR EARTHQUAKES <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | Title Page <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Front Matter FOREWORD AND ACKOWLEDGMENTS BACKGROUND AND PURPOSE <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | ACKNOWLEDGMENTS <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | TABLE OF CONTENTS <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | CHAPTER 1: INTRODUCTION 1.1 Background <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 1.2 The Architect’s Role in Seismic Design <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 1.3 The Contents of This Publication <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 1.4 The Bottom Line <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | CHAPTER 2: NATURE OF EARTHQUAKES AND SEISMIC HAZARDS 2.1 Introduction <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 2.2\tObservations of Earthquakes\t 2.2.1\tPlate Tectonics and Seismicity <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 2.2.2\tEarthquake Fault Types <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 2.2.3 Earthquake Effects Ground Shaking Intensity <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Landslides <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Tsunamis and Seiches <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Liquefaction <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 2.3 Seismic Waves And Strong Motion 2.3.1\tSeismic Instrumental Recordings and Systems <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 2.3.2\tTypes of Earthquake Waves <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 2.4. Seismic Sources And Strong Motion <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 2.4.1\tEarthquake Magnitude <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 2.4.2 Elastic Rebound and its Relationship to Earthquake Strong Ground Motion <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 2.4.3 Source Directivity and its Effect on Strong Ground Motions <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 2.5\tStrong Ground Motion <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 2.5.1\tDuration of Strong Shaking 2.5.2\tEstimating Time Histories <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 2.6. Seismic Hazard 2.6.1\tEmpirical Attenuation Curves <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 2.6.2 Probabilistic Seismic Hazard Analysis (PSHA) and Building Codes Identification of the seismic source or faults. <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Characterization of annual rates of seismic events. Development of attenuation relationships Combining factors <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 2.7\tConclusions <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 2.8\tAcknowledgments <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 2.9 Cited and Other Recommended References <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 2.10 Web Resources <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | CHAPTER 3: SITE EVALUATION AND SELECTION 3.1 Introduction 3.2 Selecting and Assessing Building Sites in Earthquake Country <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 3.2.1 Performance Criteria, Site Selection, and Evaluation <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 3.2.2 Building Program and Site Evaluation 3.3 The Inportance of the Right Team\u2014Geotechnical Engineering Expertise <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 3.3.1 The Site Assessment Process 3.3.2 Geotechnical Report Content <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 3.3.3 Additional Investigations to Determine Landslide and Liquefaction 3.3.4 Information Sources for the Site Assessment Process <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 3.4 Local Government Hazard Assessments\u2014DMA 2000 3.5 Tools for Getting Started <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 3.5.1 Understanding Regional Earthquake Risk-Big Picture of Expected Ground Motions USGS 2002 Ground Motion Maps State Survey Risk Maps <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | HAZUS Earthquake Loss Estimates <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 3.6 Earthquake Hazards to Avoid 3.6.1\tEarthquake Fault Zones <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Mitigating Fault Zone Hazards <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Liquefaction Hazard Zones <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Mitigation Options for Liquefiable Sites <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Location of the Structure Intervention on the Site <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Special Design Considerations 3.6.3 Areas of Intensified Ground Motions <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 3.6.4\tGround Failure, Debris Flows, and Land Slides Landslide Hazard Maps <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Mitigation Options <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 3.7 Off-Site Issues That Affect Site Selection 3.7.1\tAccess and Egress 3.7.2\tInfrastructure <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 3.7.3\tAdjacency\t 3.8 Earthquake and Tsunami Hazards <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Mitigating Tsunami and Coastal Surge Hazards <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Notes <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | CHAPTER 4: EARTHQUAKE EFFECTS ON BUILDINGS 4.1 Introduction 4.2 Inertial Forces and Acceleration <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 4.3\tDuration, Velocity, and Displacement <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 4.4\tGround Amplification <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 4.5 Period and Resonance 4.5.1 Natural Periods <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | 4.5.2 Ground Motion, Building Resonance, and Response Spectrum <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 4.5.3\tSite Response Spectrum <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 4.6 Damping <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 4.7 Dynamic Amplification 4.8\tHigher Forces and Uncalculated Resistance <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 4.9\tDuctility <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 4.10 Strength, Stiffness, Force Distribution, and Stress Concentration 4.10.1 Strength and Stiffness\t <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | 4.10.2 Force Distribution and Stress Concentration <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 4.11 Torsional Forces <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 4.12 Nonstructural Components <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 4.13 Construction Quality <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 4.14 Conclusion <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 4.15 References 4.16 To FInd Out More <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | CHAPTER 5: SEISMIC ISSUES IN ARCHITECTURAL DESIGN 5.1 Introduction 5.2 The Basic Seismic Structural Systems <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 5.2.1\tThe Vertical Lateral Resistance Systems <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 5.2.2 Diaphragms\u2014 The Horizontal Resistance System <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 5.2.3 Optimizing the Structural\/Architectural Configuration <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 5.3 The Effects of Configuration Irregularity 5.3.1 Stress Concentrations 5.3.2 Torsion <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 5.4 Configuration Irregularity in the Seismic Code <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 5.5 Four Serious Configuration Conditions <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 5.5.1 Soft and Weak Stories (Code Irregularities Types V1 and V5) <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 5.5.2 Discontinuous Shear Walls (Code Type Irregularity V5) <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 5.5.3 Variations in Perimeter Strength and Stiffness (Code Type P1) <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | 5.5.4 \tRe-entrant Corners (Code Type Irregularitiy H5) <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 5.6 Other Architectural\/Structural Issues 5.6.1 Overturning: Why Buildings Fall Down, Not Over <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | 5.6.2 Perforated Shear Walls <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 5.6.3 Strong Beam, Weak Column 5.6.4 Setbacks and Planes of Weakness <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 5.7 Irregular Configurations: A Twentieth Century Problem <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 5.7.1 A New Vernacular: The International Style and its Seismic Implications <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 5.8 Designing for Problem Avoidance 5.8.1 Use of Regular Configurations 5.8.2 Designs for Irregular Configurations <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 5.9 Beyond the international Style: Towards a Seismic Architecture? <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | 5.9.1 The Architect\u2019s Search for Forms \u2013 Symbolic and Metaphorical <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 5.9.2\tNew Architectural Prototypes Today <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 5.9.3 Towards an Earthquake Architecture 5.9.4 Expressing the Lateral-Force Systems <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 5.9.5\tThe Earthquake as a Metaphor <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | 5.10\tConclusion <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 5.11 References 5.12 To Find Out More <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | CHAPTER 6: THE REGULATION OF SEISMIC DESIGN 6.1 Introduction <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | 6.2 Earthquakes and Code Action 6.2.1 Early 20th Century <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | 6.2.2 The 1920s and the First Seismic Code <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | 6.2.3 Mid-Century Codes and the Introduction of Statewide Regulations <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | 6.2.4 Late 20th Century: the Move toward New Model Building Codes <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 6.2.5 Current Status of Seismic Code Development 6.3 Code Intent 6.3.1 The Purpose of Earthquake Code Provisions <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | 6.3.2 Conflicts Between Intent, Expectations, and Performance <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 6.4 Perfomance Based Seismic Design 6.4.1 Prescriptive Design, Performance Design, and the Code <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | 6.4.2 Definitions of Performance-Based Seismic Design <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | 6.4.3 Implementing Performance-Based Seismic Design <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | 6.5 Seismic Design Provisions 6.5.1 Code-Defined Parameters <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 6.5.2 Performance Levels <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | 6.5.3 Performance-Based Seismic Engineering <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | 6.5.4 Engineering Analysis Methods <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 6.6 Nonstructural Codes <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 6.7 Conclusion <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 6.8 References <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | CHAPTER 7: SEISMIC DESIGN \u2014 PAST, PRESENT, AND FUTURE 7.1 Introduction 7.2 A Brief Summary of 100 Years of Structural Seismic Design <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | 7.3 Historic and Current Structural-Seismic Systems 7.3.1 Early Structural Systems-Pre-1906 San Francisco Earthquake <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | 7.3.2 The Early Years (1906 \u2013 1940) 7.3.3 The Middle Years (1945 \u2013 1960) <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | 7.3.4 The Mature Years (1960 \u2013 1985) 7.3.5 The Creative Years (1985 \u2013 2000) <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | 7.4 Background and Progression of Structural-Seismic Concepts 7.4.1 Development of Seismic Resisting Systems <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | 7.4.2 Pictorial History of Seismic Systems <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | 7.5 Commentary on Structural Frameworks 7.5.1 Steel Building Frameworks <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | 7.5.2 Concrete Building Frameworks <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | 7.6 System Characteristics <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | 7.6.1 Elastic Design\u2014Linear Systems 7.6.2 Post-Elastic Design\u2014Nonlinear Drift 7.6.3 Cyclic Behavior <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | 7.6.4 Performance-Based Seismic Design 7.6.5 Nonlinear Performance Comparisons <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | 7.6.6 Energy Dissipation <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | 7.7 The Search For the Perfect Seismic System 7.7.1 Structural Mechanisms <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | 7.7.2 Semi-Active and Active Dampers <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | 7.7.3 Cost-Effective Systems <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | 7.7.4 Avoiding the Same Mistakes <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | 7.7.5 Configurations Are Critical <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | 7.7.6 Common-Sense Structural Design-Lessons Learned <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | Select the Appropriate Scale Reduce Dynamic Resonance <\/td>\n<\/tr>\n | ||||||
275<\/td>\n | Energy Dissipation <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | 7.8 Conclusions 7.9 References <\/td>\n<\/tr>\n | ||||||
279<\/td>\n | CHAPTER 8: EXISTING BUILDINGS \u2014 EVALUATION AND RETROFIT 8.1 Introduction 8.1.1 Contents of Chapter 8.1.2 Reference to Other Relevant Chapters <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | 8.2 Background <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | 8.2.1 Changes in Building Practice and Seismic Design Requirements Resulting in Buildings that are Currently Considered Seismically Inadequate <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | Changes In Expected Shaking Intensity and Changes in Zoning Changes in Required Strength or Ductility <\/td>\n<\/tr>\n | ||||||
283<\/td>\n | Recognition of the Importance of Nonlinear Response <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | 8.2.3 Code Requirements Covering Existing Buildings Passive Code Provisions <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | 8.3.1\tFEMA-Sponsored Activity for Existing Buildings Rapid Visual Screening <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | Evaluation of Existing Buildings Techniques Used in Seismic Retrofit <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | Financial Incentives Development of Benefit-Cost Model <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | Typical Costs of Seismic Rehabilitation Technical Guidelines for Seismic Rehabilitation <\/td>\n<\/tr>\n | ||||||
298<\/td>\n | lDevelopment of a Standardized Regional Loss Estimation Methodology\u2014HAZUS <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | Incremental Rehabilitation 8.3.2\tThe FEMA Model Building Types <\/td>\n<\/tr>\n | ||||||
300<\/td>\n | 8.4 Seismic Evaluation of Existing Buildings <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | Identification of clearly vulnerable or dangerous buildings to help establish policies of mitigation <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | Earthquake Loss Estimation Formal Economic Loss Evaluations (e.g. Probable Maximum Loss or PML) <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | Rapid Evaluation 8.4.2 Evaluation of Individual Buildings <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | Initial Evaluation (ASCE 31 Tier 1) <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | Intermediate Evaluation (ASCE 31 Tier 2) <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | 8.4.3 Other Evaluation Issues Data Required for Seismic Evaluation <\/td>\n<\/tr>\n | ||||||
317<\/td>\n | Performance Objectives and Acceptability <\/td>\n<\/tr>\n | ||||||
319<\/td>\n | Reliability of Seismic Evaluations <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | 8.5 Seismic Rehabilitation of Existing Buildings 8.5.1 Categories of Rehabilitation Activity <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | Modification of Global Behavior <\/td>\n<\/tr>\n | ||||||
325<\/td>\n | Modification of Local Behavior <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | Connectivity 8.5.2 Conceptual Design of a Retrofit Scheme for an Individual Building <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | 8.5.3 Other Rehabilitation Issues Inadequate recognition of disruption to occupants <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | Collateral required work 8.5.4\tExamples <\/td>\n<\/tr>\n | ||||||
339<\/td>\n | 8.6 Special Issues With Historic Buildings 8.6.1\tSpecial Seismic Considerations 8.6.2\tCommon Issues of Tradeoffs <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | 8.6.3 Examples of Historical Buildings <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | 8.7\tConclusion 8.8.1 References from Text <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | 8.8.2 To Learn More <\/td>\n<\/tr>\n | ||||||
353<\/td>\n | CHAPTER 9: NONSTRUCTURAL DESIGN PHILOSOPHY 9.1 Introduction <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | 9.2 What is Meant By the Term \u201cNonstructural\u201d\u009d <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | 9.2.1 Architectural Components <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | 9.2.2 Mechanical and Electrical Components 9.2.3 Consequences of Inadequate Nonstructural Design <\/td>\n<\/tr>\n | ||||||
358<\/td>\n | 9.3 Nonstructural Seismic Design and \u201cNormal\u201d\u009d Seismic Design 9.4 Effects of Improper Nonstructural Design <\/td>\n<\/tr>\n | ||||||
360<\/td>\n | 9.5 Damage to Nonstructural Systems and Components <\/td>\n<\/tr>\n | ||||||
368<\/td>\n | 9.6 Design Details for Nnstructural Damage Reduction 9.6.1\tPrecast Concrete Cladding Panels <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | 9.6.2\tSuspended Ceilings 9.6.3\tLighting Fixtures 9.6.4\tHeavy (Masonry) Full-Height Non load Bearing Walls <\/td>\n<\/tr>\n | ||||||
370<\/td>\n | 9.6.5\tPartial\u2013Height Masonry Walls 9.6.6\tPartial-Height Metal Stud Walls 9.6.7\tParapet Bracing <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | 9.6.8\tSheet Metal Ductwork 9.6.9\tPiping <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | 9.6.10\tVibration-Isolated Equipment 9.6.11\tEmergency Power Equipment 9.6.12\tTall Shelving 9.6.13\tGas Water Heaters <\/td>\n<\/tr>\n | ||||||
373<\/td>\n | 9.7 The Need For Systems Design <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | 9.9 Nonstructural Codes 9.10 Methods of Seismic Qualification 9.10.1 Design Team Judgment <\/td>\n<\/tr>\n | ||||||
378<\/td>\n | 9.10.2 Prior Qualification 9.10.3 Mathematical Analysis and Other Qualification Methods <\/td>\n<\/tr>\n | ||||||
379<\/td>\n | 9.11 Some Myths Regarding Nonstructural Design \u201cMy Engineers take care of all my seismic design\u201d\u009d \u201cMy building is base isolated \u2026 I don\u2019t need to worry about the nonstructural components\u201d\u009d \u201cWindow films protect windows from breakage in an earthquake\u201d\u009d <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | \u201cMy building in San Bernardino survived the 1994 Northridge earthquake \u2026 it is earthquake proof\u201d\u009d <\/td>\n<\/tr>\n | ||||||
381<\/td>\n | \u201cVertical motions in earthquakes do not need to be considered for nonstructural design\u201d\u009d 9.12 What Can the Architect Do to Decrease Nonstructural Damage <\/td>\n<\/tr>\n | ||||||
382<\/td>\n | 9.13 The Complexity of Retrofitting Existing Buildings 9.14 Conclusions <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | 9.15 References <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | CHAPTER 10: DESIGN FOR EXTREME HAZARDS 10.1 Introduction <\/td>\n<\/tr>\n | ||||||
386<\/td>\n | 10.2 Multihazard Design System Interactions <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" FEMA 454 – Designing for Earthquakes: A Manual for Architects<\/b><\/p>\n |