{"id":389678,"date":"2024-10-20T03:51:07","date_gmt":"2024-10-20T03:51:07","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-ieee-62209-15282021\/"},"modified":"2024-10-26T07:04:46","modified_gmt":"2024-10-26T07:04:46","slug":"bs-en-iec-ieee-62209-15282021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-ieee-62209-15282021\/","title":{"rendered":"BS EN IEC\/IEEE 62209-1528:2021"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 4 Symbols and abbreviated terms 4.1 Physical quantities 4.2 Constants <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 4.3 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 5 Quick start guide and evaluation plan checklist Tables Table 1 \u2013 Evaluation plan checklist <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figures Figure 1 \u2013 Quick start guide <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6 Measurement system specifications 6.1 General requirements for full SAR testing <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.2 Phantom specifications 6.2.1 General 6.2.2 Basic phantom parameters <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Table 2 \u2013 Dielectric properties of the tissue-equivalent medium <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 6.2.3 Head phantom <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 6.2.4 Flat phantom <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 6.2.5 Device-specific phantoms 6.3 Influence of hand on SAR in head Figure 2 \u2013 Dimensions of the elliptical phantom <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 6.4 Scanning system requirements 6.5 Device holder specifications <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 6.6 Characteristics of the readout electronics 7 Protocol for SAR assessment 7.1 General 7.2 Measurement preparation 7.2.1 Preparation of tissue-equivalent medium and system check Figure 3 \u2013 Mounting of the DUT in the device holder using low-permittivity andlow-loss foam to avoid changes of DUT performance by the holder material <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 7.2.2 Preparation of the wireless communication DUT 7.2.3 DUT operating mode requirements <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 7.2.4 Positioning of the DUT relative to the phantom <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 4 \u2013 Designation of DUT reference points <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure 5 \u2013 Measurements performed by shifting a large deviceover the efficient measurement area of the system includingoverlapping areas \u2013 in this case: six tests performed <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 6 \u2013 Test positions for body-worn devices <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure 7 \u2013 Device with swivel antenna <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 8 \u2013 Test positions for body supported devices <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Figure 9 \u2013 Test positions for desktop devices <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Figure 10 \u2013 Test positions for front-of-face devices <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Figure 11 \u2013 Test position for hand-held devices, not used at the head or torso Figure 12 \u2013 Test position for limb-worn devices <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Figure 13 \u2013 Test position for clothing-integrated wireless communication devices <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure 14 \u2013 Possible test positions for a generic device <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Figure 15 \u2013 Vertical and horizontal reference lines and referencepoints A and B on two example device types: a full touch-screensmart phone (left) and a DUT with a keypad (right) <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure 16 \u2013 Cheek position of the DUT on the left side of SAM wherethe device position shall be maintained for the phantom test set-up Figure 17 \u2013 Tilt position of the DUT on the left side of SAM <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 7.2.5 Antenna configurations 7.2.6 Options and accessories 7.2.7 DUTs with alternative form factor Figure 18 \u2013 An alternative form factor DUT with reference points and reference lines <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 7.2.8 Test frequencies for DUTs 7.3 Tests to be performed for DUTs 7.3.1 General <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 7.3.2 Basic approach for DUT testing <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 7.4 Measurement procedure 7.4.1 General 7.4.2 Full SAR testing procedure Figure 19 \u2013 Block diagram of the tests to be performed <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Table 3 \u2013 Area scan parameters Table 4 \u2013 Zoom scan parameters <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 7.4.3 Drift Figure 20 \u2013 Orientation of the probe with respect to the line normal to the phantom surface, for head and flat phantoms, shown at two different locations <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 7.4.4 SAR measurements of DUTs with multiple antennas or multiple transmitters <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Table 5 \u2013 Example method to determine the combined SAR value using Alternative 1 <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 7.5 Post-processing of SAR measurement data 7.5.1 Interpolation 7.5.2 Extrapolation 7.5.3 Definition of the averaging volume Figure 21 \u2013 Measurement procedure for different types of correlated signals <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 7.5.4 Searching for the maxima 7.6 Time-period averaged SAR considerations 7.6.1 General 7.6.2 RF conducted power 7.6.3 Time-period averaged SAR measurement settings for SAR measurement methods <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 7.6.4 Exposure condition and test position considerations 7.6.5 Time-period averaged SAR for simultaneous transmission 7.6.6 TX factor assessment <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 7.6.7 SAR measurements 7.6.8 Uncertainty in TPAS evaluations <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 7.7 Proximity sensors considerations 7.7.1 General <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 7.7.2 Procedures for determining proximity sensor triggering distances <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure 22 \u2013 Positioning of the surfaces and edges of the DUTfor determining the proximity sensor triggering distance <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 7.7.3 Procedure for determining proximity sensor coverage area Figure 23 \u2013 Positioning of the edges of the DUT to determineproximity sensor triggering distance variations with the edgepositioned at different angles from the perpendicular position <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 7.7.4 SAR measurement procedure involving proximity sensors 7.8 SAR correction for deviations of complex permittivity from targets 7.8.1 General <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 7.8.2 SAR correction formula <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 7.8.3 Uncertainty of the correction formula 7.9 Minimization of testing time 7.9.1 General Table 6 \u2013 Root-mean-squared error SAR correction formula as afunction of the maximum change in permittivity or conductivity [28] <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 7.9.2 Fast SAR testing <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 24 \u2013 Fast SAR Procedure A <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 7.9.3 SAR test reductions Figure 25 \u2013 Fast SAR Procedure B <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure 26 \u2013 Modified chart of Figure 19 Table 7 \u2013 Threshold values TH(f) used in this proposed test reduction protocol <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure 27 \u2013 Use of conducted power for LTE mode selection,for Band 1 (1 920 MHz to 1 980 MHz) (MPR values are in dB) <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Figure 28 \u2013 Use of conducted power for LTE modeselection, for Band 17 (704 MHz to 716 MHz) (MPR values are in dB) <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | 8 Measurement uncertainty estimation 8.1 General <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 8.2 Requirements on the uncertainty evaluation Table 8 \u2013 Divisors for common probability density functions (PDFs) <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 8.3 Description of uncertainty models 8.3.1 General 8.3.2 SAR measurement of a DUT 8.3.3 System validation and system check measurement 8.3.4 System check repeatability and reproducibility 8.3.5 Fast SAR testing (relative measurement) <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Table 9 \u2013 Uncertainty budget template for evaluating the uncertaintyin the measured value of 1\u2009g or 10\u2009g psSAR from a DUT or validationantenna (N = normal, R = rectangular) <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 8.4 Parameters contributing to uncertainty 8.4.1 Measurement system errors <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 8.4.2 Phantom and device (DUT or validation antenna) errors <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 8.4.3 Corrections to the SAR result (if applied) Table 10 \u2013 Uncertainty of Formula (8) (see 7.8.2) as a function ofthe maximum change in permittivity or conductivity <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 9 Measurement report 9.1 General 9.2 Items to be recorded in the measurement report <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Annexes Annex A (normative)SAR measurement system verification A.1 Overview A.2 System check A.2.1 Purpose <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | A.2.2 Phantom set-up A.2.3 System check antenna <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | A.2.4 System check antenna input power measurement Figure A.1 \u2013 Test set-up for the system check <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | A.2.5 System check procedure <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | A.2.6 System check acceptance criteria A.3 System validation A.3.1 Purpose A.3.2 Phantom set-up A.3.3 System validation antennas <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | A.3.4 Input power measurement A.3.5 System validation procedure <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | A.4 Fast SAR testing system validation and system check A.4.1 General A.4.2 Fast SAR testing system validation <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | A.4.3 Fast SAR testing system check <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Annex B (informative)SAR test reduction supporting information B.1 General B.2 Test reduction based on characteristics of DUT design B.2.1 General B.2.2 Statistical analysis overview <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | B.2.3 Analysis results Table B.1 \u2013 The number of DUTs used for the statistical study <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Figure B.1 \u2013 Distribution of Tilt\/Cheek Table B.2 \u2013 Statistical analysis results ofP(Tilt\/Cheek > x) for various x values Table B.3 \u2013 Statistical analysis results ofP(Tilt\/Cheek > x) for 1 g and 10 g psSAR <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Table B.4 \u2013 Statistical analysis results ofP(Tilt\/Cheek > x) for various antenna locations Table B.5 \u2013 Statistical analysis results ofP(Tilt\/Cheek > x) for various frequency bands <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | B.2.4 Conclusions B.2.5 Expansion to multi-transmission antennas B.3 Test reduction based on analysis of SAR results on other signal modulations B.3.1 General Table B.6 \u2013 Statistical analysis results ofP(Tilt\/Cheek > x) for various device types <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | B.3.2 Analysis results <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | B.4 Test reduction based on SAR level analysis B.4.1 General Figure B.2 \u2013 SAR relative to SAR in position with maximum SAR in GSM mode <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | B.4.2 Statistical analysis <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Figure B.3 \u2013 Two points identifying the minimum distance between theposition of the interpolated maximum SAR and the points at 0,6 \u00d7 SARmax Figure B.4 \u2013 Histogram for Dmin in the case of GSM 900 and iso-level at 0,6 \u00d7 SARmax Table B.7 \u2013 Distance D*min for various \u201ciso-level\u201d values <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | B.4.3 Test reduction applicability example Figure B.5 \u2013 Histogram for random variable Factor1g,1800 Table B.8 \u2013 Experimental thresholds to have a 95 % probability that themaximum measured SAR value from the area scan will also have a psSAR <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Table B.9 \u2013 SAR values from the area scan (GSM 900 band): Example 1 Table B.10 \u2013 SAR values from the area scan (GSM 900 band): Example 2 <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | B.5 Other statistical approaches to search for the high SAR test configurations B.5.1 General B.5.2 Test reductions based on a DOE B.5.3 One factor at a time (OFAT) search B.5.4 Analysis of unstructured data <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Annex C (informative)Measurement uncertainty of results obtained fromspecific fast SAR testing methods C.1 General C.2 Measurement uncertainty evaluation \u2013 contributing parameters C.2.1 General <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | C.2.2 Probe calibration and system calibration drift C.2.3 Isotropy <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | C.2.4 Probe positioning <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | C.2.5 Mutual sensor coupling <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | C.2.6 Scattering within the probe array C.2.7 Sampling error C.2.8 Array boundaries C.2.9 Probe or probe array coupling with the DUT C.2.10 Measurement system immunity \/ secondary reception <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | C.2.11 Deviations in phantom shape C.2.12 Spatial variation in dielectric properties C.2.13 Reconstruction C.3 Uncertainty budget <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | Table C.1 \u2013 Measurement uncertainty budget for relativeSAR measurements using Class 2 fast SAR testing,for tests performed within one frequency band and modulation <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Table C.2 \u2013 Measurement uncertainty budget forsystem check using Class 2 fast SAR testing <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | Annex D (normative)SAR system validation antennas D.1 General antenna requirements D.2 Standard dipole antenna D.2.1 Mechanical description <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Figure D.1 \u2013 Mechanical details of the standard dipoles <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | D.2.2 Numerical target SAR values Table D.1 \u2013 Mechanical dimensions of the reference dipoles <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Table D.2 \u2013 Numerical target SAR values (W\/kg) for standard dipole and flat phantom <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | D.3 Standard waveguide D.3.1 Mechanical description Figure D.2 \u2013 Standard waveguide (dimensions are according to Table D.3) Table D.3 \u2013 Mechanical dimensions of the standard waveguide <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | D.3.2 Numerical target SAR values D.4 System validation antennas for below 150 MHz D.4.1 General Table D.4 \u2013 Numerical target SAR values for waveguides <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | D.4.2 Confined loop antenna Figure D.3 \u2013 Drawing of the CLA that corresponds to a resonant loop integratedin a metallic structure to isolate the resonant structure from the environment <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Table D.5 \u2013 Numerical target SAR values for CLAs <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | D.4.3 Meander dipole antenna Figure D.4 \u2013 Mechanical details of the meander dipoles for 150 MHz Table D.6 \u2013 Mechanical dimensions of the reference meander dipole <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | D.5 Orthogonal E-field source \u2013 VPIFA D.5.1 Mechanical description Table D.7 \u2013 Numerical target SAR value (W\/kg) for meander dipole <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Table D.8 \u2013 Dimensions for VPIFA antennas at different frequencies <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | Figure D.5 \u2013 VPIFA validation antenna Figure D.6 \u2013 Mask for positioning VPIFAs Table D.9 \u2013 Electric properties for the dielectric layers for VPIFA antennas <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | D.5.2 Numerical target SAR values Table D.10 \u2013 Numerical target SAR values for VPIFAs on the flat phantom <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Annex E (normative)Calibration and characterization of dosimetric (SAR) probes E.1 Introductory remarks <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | E.2 Linearity E.3 Assessment of the sensitivity of the dipole sensors E.3.1 General E.3.2 Two-step calibration procedures <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | Table E.1 \u2013 Uncertainty analysis for transfer calibration using temperature probes <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Figure E.1 \u2013 Experimental set-up for assessment of the sensitivity(conversion factor) using a vertically-oriented rectangular waveguide <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Table E.2 \u2013 Guidelines for designing calibration waveguides <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | E.3.3 One-step calibration procedure \u2013 reference antenna method Table E.3 \u2013 Uncertainty analysis of the probe calibration in waveguide <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Figure E.2 \u2013 Illustration of the antenna gain evaluation set-up <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Table E.4 \u2013 Uncertainty template for evaluation of reference antenna gain <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Table E.5 \u2013 Uncertainty template for calibration using reference antenna <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | E.3.4 One-step calibration procedure \u2013 coaxial calorimeter method <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Figure E.3 \u2013 Schematic of the coaxial calorimeter system <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | E.4 Isotropy E.4.1 Axial isotropy E.4.2 Hemispherical isotropy Table E.6 \u2013 Uncertainty components for probe calibration using thermal methods <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Figure E.4 \u2013 Set-up to assess hemisphericalisotropy deviation in tissue-equivalent medium <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Figure E.5 \u2013 Alternative set-up to assess hemisphericalisotropy deviation in tissue-equivalent medium <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | Figure E.6 \u2013 Experimental set-up for thehemispherical isotropy assessment <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Figure E.7 \u2013 Conventions for dipole position (\u03be) and polarization (\u03b8) <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | E.5 Lower detection limit Figure E.8 \u2013 Measurement of hemispherical isotropy with reference antenna <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | E.6 Boundary effect E.7 Response time <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Annex F (informative)Example recipes for phantom tissue-equivalent media F.1 General F.2 Ingredients <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | F.3 Tissue-equivalent medium liquid formulas (permittivity\/conductivity) Table F.1 \u2013 Suggested recipes for achievingtarget dielectric properties, 30 MHz to 900 MHz <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | Table F.2 \u2013 Suggested recipes for achieving targetdielectric properties, 1 800 MHz to 10 000 MHz <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | Annex G (normative)Phantom specifications G.1 Rationale for the phantom characteristics G.1.1 General G.1.2 Rationale for the SAM phantom G.1.3 Rationale for the flat phantom <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | G.2 SAM phantom specifications G.2.1 General SAM phantom specifications <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | Figure G.1 \u2013 Illustration of dimensions in Table G.1 and Table G.2 <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Table G.1 \u2013 Dimensions used in deriving SAM phantom fromthe ARMY 90th percentile male head data (Gordon et al. [61]) Table G.2 \u2013 Additional SAM dimensions compared with selecteddimensions from the ARMY 90th percentile male head data(Gordon et al. [61]) \u2013 specialist head measurement section <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | Figure G.2 \u2013 Close up side view of phantom showing the ear region <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | G.2.2 SAM phantom shell specification Figure G.3 \u2013 Side view of the phantom showing relevant markings <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Figure G.4 \u2013 Sagittally bisected phantom with extended perimeter(shown placed on its side as used for device SAR tests) Figure G.5 \u2013 Picture of the phantom showing the central strip <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | G.3 Flat phantom specifications Figure G.6 \u2013 Cross-sectional view of SAM at the reference plane <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | G.4 Justification of flat phantom dimensions <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | Figure G.7 \u2013 Dimensions of the flat phantom set-up used for deriving theminimal phantom dimensions for W and L for a given phantom depth D <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Figure G.8 \u2013 FDTD predicted error in the 10 g psSAR as a function of the dimensions of the flat phantom compared with an infinite flat phantom at 800 MHz Table G.3 \u2013 Parameters used for calculation of reference SAR values in Table D.2 <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | G.5 Rationale for tissue-equivalent media <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | G.6 Definition of a phantom coordinate system and a DUT coordinate system Figure G.9 \u2013 Complex permittivity of human tissuescompared to the phantom target properties <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | Figure G.10 \u2013 Example reference coordinate systemfor the left-ear ERP of the SAM phantom Figure G.11 \u2013 Example coordinate system on a DUT <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Annex H (informative)Measurement of the dielectric properties of tissue-equivalent media and uncertainty estimation H.1 Overview H.2 Measurement techniques H.2.1 General H.2.2 Instrumentation H.2.3 General principles <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | H.3 Slotted coaxial transmission line H.3.1 General H.3.2 Equipment set-up Figure H.1 \u2013 Slotted line set-up <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | H.3.3 Measurement procedure H.4 Contact coaxial probe H.4.1 General <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | H.4.2 Equipment set-up Figure H.2 \u2013 An open-ended coaxial probe with inner and outer radii a and b, respectively <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | H.4.3 Measurement procedure H.5 TEM transmission line H.5.1 General <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | H.5.2 Equipment set-up H.5.3 Measurement procedure Figure H.3 \u2013 TEM line dielectric properties test set-up [85] <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | H.6 Dielectric properties of reference liquids <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | Table H.1 \u2013 Parameters for calculating thedielectric properties of various reference liquids <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Table H.2 \u2013 Dielectric properties of reference liquids at 20 \u00b0C <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Annex I (informative)Studies for potential hand effects on head SAR I.1 Overview I.2 Background I.2.1 General <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | I.2.2 Hand phantoms I.3 Summary of experimental studies I.3.1 Experimental studies using fully compliant SAR measurement systems I.3.2 Experimental studies using other SAR measurement systems <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | I.4 Summary of computational studies I.5 Conclusions <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | Annex J (informative)Skin enhancement factor J.1 Background Figure J.1 \u2013 SAR and temperature increase (\u0394T) distributionssimulated for a three-layer (skin, fat, muscle) planar torso model <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | J.2 Rationale J.3 Simulations <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | J.4 Recommendation Figure J.2 \u2013 Statistical approach to protect 90 % of the population Table J.1 \u2013psSAR correction factors <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | Figure J.3 \u2013 psSAR skin enhancement factors <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | Annex K (normative)Application-specific phantoms K.1 General K.2 Phantom basic requirements K.3 Examples of specific alternative phantoms K.3.1 Face-down SAM phantom <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | K.3.2 Head-stand SAM phantom K.3.3 Wrist phantom Figure K.1 \u2013 SAM face-down phantom Figure K.2 \u2013 SAM head-stand phantom <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | K.4 Scanning and evaluation requirements K.5 Uncertainty assessment K.6 Reporting Figure K.3 \u2013 Wrist phantom <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | Annex L (normative)Fast compliance evaluations using a flat-bottomphantom with a curved corner (Uniphantom) L.1 General L.2 Uniphantom L.3 Device positions for compliance testing and definitions of handset shapes L.3.1 General Figure L.1 \u2013 Cross section of the unified phantom (Uniphantom) with its dimensions <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | L.3.2 Handsets with a straight form factor L.3.3 Handsets with a clamshell form factor L.4 Testing procedure L.4.1 General L.4.2 Handsets with straight form factors Figure L.2 \u2013 Measurement positions of handsets withstraight and clamshell form factors <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | L.4.3 Handsets with clamshell form factors Figure L.3 \u2013 Flow chart of testing procedure for handsets with straight form factors <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | L.5 Uncertainty of SAR measurement results using Uniphantom <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | Annex M (informative)Wired hands-free headset testing M.1 Concept Figure M.1 \u2013 Configuration of a personal wired hands-free headset <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | M.2 Example results Figure M.2 \u2013 Configuration without a personal wired hands-free headset <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | M.3 Discussion <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | Annex N (informative)Applying the head SAR test procedures Table N.1 \u2013 SAR results tables for example test results in GSM 850 band <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | Table N.2 \u2013 SAR results tables for example test results in GSM 900 band Table N.3 \u2013 SAR results tables for example test results in GSM 1800 band <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Table N.4 \u2013 SAR results tables for example test results in GSM 1900 band <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | Annex O (normative)Uncertainty analysis for measurement systemmanufacturers and calibration laboratories O.1 Probe linearity and detection limits <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | O.2 Broadband signal uncertainty O.3 Boundary effect <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | O.4 Field-probe readout electronics uncertainty O.5 Signal step-response time uncertainty <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | O.6 Probe integration-time uncertainty O.6.1 General O.6.2 Probe integration-time uncertainty for periodic pulsed signals <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | O.6.3 Probe integration-time uncertainty for non-periodic signals O.7 Contribution of mechanical constraints O.7.1 Mechanical tolerances of the probe positioner (directions parallel to phantom surface) O.7.2 Probe positioning with respect to phantom shell surface <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | O.7.3 First-order approximation of exponential decay O.8 Contribution of post-processing O.8.1 General <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | O.8.2 Evaluation test functions <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | Table O.1 \u2013 Parameters for the reference function f1 in Formula (O.12) <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | O.8.3 Data-processing algorithm uncertainty evaluations Table O.2 \u2013 Reference SAR values from the distribution functions f1, f2, and f3 <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | O.9 Tissue-equivalent medium properties uncertainty O.9.1 General O.9.2 Medium density O.9.3 Medium conductivity uncertainty O.9.4 Medium permittivity uncertainty O.9.5 Assessment of dielectric properties measurement uncertainties Figure O.1 \u2013 Orientation and surface of averaging volume relative to phantom surface <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | O.9.6 Medium temperature uncertainty Table O.3 \u2013 Example uncertainty template and example numericalvalues for permittivity (\u03b5\u2032r ) and conductivity (\u03c3) measurement <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | Annex P (normative)Post-processing techniques P.1 Extrapolation and interpolation schemes P.1.1 General P.1.2 Extrapolation schemes P.1.3 Interpolation schemes P.2 Averaging scheme and maximum finding P.2.1 Volume average schemes <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | P.2.2 Finding the psSAR and estimating the uncertainty <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | Annex Q (informative)Rationale for time-period averaged SAR test procedure <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | Annex R (normative)Measurement uncertainty analysis for testing laboratories R.1 RF ambient conditions R.2 Device positioning and holder uncertainties R.2.1 General <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | R.2.2 Device holder perturbation uncertainty <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | R.2.3 DUT positioning uncertainty with a specific test device holder: Type A R.3 Probe modulation response <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | R.4 Time-period averaged SAR R.4.1 General R.4.2 TX factor uncertainty <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | R.5 Measured SAR drift R.5.1 General R.5.2 Accounting for drift <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | R.6 SAR scaling uncertainty <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | Annex S (normative)Validation antenna SAR measurement uncertainty S.1 Deviation of experimental antennas S.2 Other uncertainty contributions when using system validation antennas Table S.1 \u2013 Uncertainties relating to the deviations ofthe parameters of the standard waveguide from theory <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | Table S.2 \u2013 Other uncertainty contributions relatingto the dipole antennas specified in Annex D. Table S.3 \u2013 Other uncertainty contributions relating tothe standard waveguides specified in Annex D <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | Annex T (normative)Interlaboratory comparisons T.1 Purpose T.2 Phantom set-up T.3 Reference devices T.4 Power set-up <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | T.5 Interlaboratory comparison \u2013 procedure <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Annex U (informative)Determination of the margin forcompliance evaluation using the Uniphantom U.1 General U.2 Deviation of the psSAR measured using the Uniphantom from the psSAR measured using the SAM phantom Figure U.1 \u2013 Categories (classes) for comparison of the measured psSAR between the Uniphantom (SARuni) and the SAM phantom (SARSAM) <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | U.3 Determination of margin based on 95 % confidence interval U.4 Examples of the determination of the margin factor U.4.1 Margin for handsets with straight form factors at flat-bottom position <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | Figure U.2 \u2013 Histogram of the deviation of the 10 g psSAR of 45 handsetswith straight form factors positioned at the flat bottom of the Uniphantom Table U.1 \u2013 Summary of information to determine the margin for handsetswith straight form factors positioned at the flat bottom of the Uniphantom <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | U.4.2 Margin for handsets with straight form factors (except smart phones at flat-bottom position) Figure U.3 \u2013 Histogram of the deviation of the 1 g psSAR of 40 handsetswith straight form factors positioned at the flat bottom of the Uniphantom <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | Figure U.4 \u2013 Histogram of the deviation of the 10 g psSAR of 25 handsets withstraight form factors positioned at the flat bottom of the Uniphantom Table U.2 \u2013 Summary of information to determine the margin for handsetswith straight form factors, including slide-type and bar handsets (exceptsmart phones), positioned at the flat bottom of the Uniphantom <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | U.4.3 Margin for smart phones at flat-bottom position Figure U.5 \u2013 Histogram of the deviation of the 1 g psSAR from 20 handsets withstraight form factors positioned at the flat bottom of the Uniphantom <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | Figure U.6 \u2013 Histogram of the deviation of the 10 g psSAR of 20 handsets with straight form factors or smart phones positioned at the flat bottom of the Uniphantom Table U.3 \u2013 Summary of information to determine the margin for thesmart phones positioned at the flat bottom of the Uniphantom <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | U.4.4 Margin for smart phones at corner position Figure U.7 \u2013 Histogram of the deviation of the 1 g psSAR of 20 handsets with straight form factors or smart phones positioned at the flat bottom of the Uniphantom <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | Figure U.8 \u2013 Histogram of the deviation of the 10 g psSAR of 20 handsets with straight form factors or smart phones positioned at the corner of the Uniphantom Table U.4 \u2013 Summary of information to determine the marginfor smart phones positioned at the corner of the Uniphantom <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | U.4.5 Margin for handsets with clamshell form factors at corner position Figure U.9 \u2013 Histogram of the deviation of the 1 g psSAR of 19 handsets with straight form factors or smart phones positioned at the corner of the Uniphantom Table U.5 \u2013 Statistical analysis results of P(Tilt\/Cheek > x) for various device types <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | Figure U.10 \u2013 Histogram of the deviation of the 10 g psSAR of 20 handsetswith clamshell form factors at the corner of the Uniphantom Table U.6 \u2013 Summary of information to determine the margin for handsets with clamshell form factors positioned at the corner of the Uniphantom <\/td>\n<\/tr>\n | ||||||
268<\/td>\n | Figure U.11 \u2013 Histogram of the deviation of the 1 g psSAR of 19 handsetswith clamshell form factors at the corner of the Uniphantom <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | Annex V (informative)Automatic input power levelcontrol for system validation V.1 General V.2 Operational mechanism of AIPLC Figure V.1 \u2013 Generated RF input power variations tooperation time without and with application of AIPLC <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | Figure V.2 \u2013 The system block diagram of the AIPLC Figure V.3 \u2013 Power variation characteristics byadjusting the amplifier or signal generator outputs <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | Annex W (informative)LTE test configurations supporting information W.1 General W.2 Study 1 <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | Figure W.1 \u2013 Low, middle, and high channels at 2 GHz band (Band 1) Table W.1 \u2013 Relative standard deviation of \u03b1 found in Study 1 (without MPR) <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | W.3 Study 2 Figure W.2 \u2013 RF conducted power versus 10 g psSAR <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | W.4 Justifications of relative standard deviations Figure W.3 \u2013 1 g SAR as a function of RF conducted power in various test conditions Table W.2 \u2013 Maximum relative standard deviation of \u03b1 found in Study 2 (with MPR) <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)<\/b><\/p>\n |