{"id":421324,"date":"2024-10-20T06:35:35","date_gmt":"2024-10-20T06:35:35","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-310102019-2\/"},"modified":"2024-10-26T12:20:36","modified_gmt":"2024-10-26T12:20:36","slug":"bs-en-iec-310102019-2","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-310102019-2\/","title":{"rendered":"BS EN IEC 31010:2019"},"content":{"rendered":"
This International Standard provides guidance on the selection and application of techniques for assessing risk in a wide range of situations. The techniques are used to assist in making decisions where there is uncertainty, to provide information about particular risks and as part of a process for managing risk. The document provides summaries of a range of techniques, with references to other documents where the techniques are described in more detail.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA(normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4 Core concepts 4.1 Uncertainty <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4.2 Risk 5 Uses of risk assessment techniques <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 6 Implementing risk assessment 6.1 Plan the assessment 6.1.1 Define purpose and scope of the assessment <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 6.1.2 Understand the context 6.1.3 Engage with stakeholders 6.1.4 Define objectives 6.1.5 Consider human, organizational and social factors <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6.1.6 Review criteria for decisions <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 6.2 Manage information and develop models 6.2.1 General 6.2.2 Collecting information 6.2.3 Analysing data <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6.2.4 Developing and applying models <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.3 Apply risk assessment techniques 6.3.1 Overview <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 6.3.2 Identifying risk 6.3.3 Determining sources, causes and drivers of risk <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 6.3.4 Investigating the effectiveness of existing controls 6.3.5 Understanding consequences, and likelihood <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.3.6 Analysing interactions and dependencies 6.3.7 Understanding measures of risk <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.4 Review the analysis 6.4.1 Verifying and validating results 6.4.2 Uncertainty and sensitivity analysis <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6.4.3 Monitoring and review 6.5 Apply results to support decisions 6.5.1 Overview <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.5.2 Decisions about the significance of risk 6.5.3 Decisions that involve selecting between options <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 6.6 Record and report risk assessment process and outcomes 7 Selecting risk assessment techniques 7.1 General <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 7.2 Selecting techniques <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Annex A (informative)Categorization of techniques A.1 Introduction to categorization of techniques A.2 Application of categorization of techniques Tables Table A.1 \u2013 Characteristics of techniques <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Table A.2 \u2013 Techniques and indicative characteristics <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | A.3 Use of techniques during the ISO 31000 process Figures Figure A.1 \u2013 Application of techniques in the ISO 31000 risk management process [3] <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Table A.3 \u2013 Applicability of techniques to the ISO 31000 process <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Annex B (informative)Description of techniques B.1 Techniques for eliciting views from stakeholders and experts B.1.1 General B.1.2 Brainstorming <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | B.1.3 Delphi technique <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | B.1.4 Nominal group technique <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | B.1.5 Structured or semi-structured interviews <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | B.1.6 Surveys <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | B.2 Techniques for identifying risk B.2.1 General <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | B.2.2 Checklists, classifications and taxonomies <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | B.2.3 Failure modes and effects analysis (FMEA) and failure modes, effects and criticality analysis (FMECA) <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | B.2.4 Hazard and operability (HAZOP) studies <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Table B.1 \u2013 Examples of basic guidewords and their generic meanings <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | B.2.5 Scenario analysis <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | B.2.6 Structured what if technique (SWIFT) <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | B.3 Techniques for determining sources, causes and drivers of risk B.3.1 General <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | B.3.2 Cindynic approach <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Table B.2 \u2013 Table of deficits for each stakeholder Table B.3 \u2013 Table of dissonances between stakeholders <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | B.3.3 Ishikawa analysis (fishbone) method <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Figure B.1 \u2013 Example Ishikawa (fishbone) diagram <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | B.4 Techniques for analysing controls B.4.1 General B.4.2 Bow tie analysis <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Figure B.2 \u2013 Example of Bowtie <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | B.4.3 Hazard analysis and critical control points (HACCP) <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | B.4.4 Layers of protection analysis (LOPA) <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | B.5 Techniques for understanding consequences and likelihood B.5.1 General B.5.2 Bayesian analysis <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | B.5.3 Bayesian networks and influence diagrams <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Figure B.3 \u2013 A Bayesian network showing a simplified version of a realecological problem: modelling native fish populations in Victoria, Australia <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | B.5.4 Business impact analysis (BIA) <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | B.5.5 Cause-consequence analysis (CCA) <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Figure B.4 \u2013 Example of cause-consequence diagram <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | B.5.6 Event tree analysis (ETA) <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure B.5 \u2013 Example of event tree analysis <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | B.5.7 Fault tree analysis (FTA) <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure B.6 \u2013 Example of fault tree <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | B.5.8 Human reliability analysis (HRA) <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | B.5.9 Markov analysis <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure B.7 \u2013 Example of Markov diagram Table B.4 \u2013 Example of Markov matrix <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | B.5.10 Monte Carlo simulation Table B.5 \u2013 Examples of systems to which Markov analysis can be applied <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | B.6 Techniques for analysing dependencies and interactions B.6.1 Causal mapping <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | B.6.2 Cross impact analysis <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | B.7 Techniques that provide a measure of risk B.7.1 Toxicological risk assessment Figure B.8 \u2013 Example of dose response curve <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | B.7.2 Value at risk (VaR) Figure B.9 \u2013 Distribution of value Figure B.10 \u2013 Detail of loss region VaR values <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | B.7.3 Conditional value at risk (CVaR) or expected shortfall (ES) Figure B.11 \u2013 VaR and CVaR for possible loss portfolio <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | B.8 Techniques for evaluating the significance of risk B.8.1 General B.8.2 As low as reasonably practicable (ALARP) and so far as is reasonably practicable (SFAIRP) <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Figure B.12 \u2013 ALARP diagram <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | B.8.3 Frequency-number (F-N) diagrams <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure B.13 \u2013 Sample F-N diagram <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | B.8.4 Pareto charts Figure B.14 \u2013 Example of a Pareto chart <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | B.8.5 Reliability centred maintenance (RCM) <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Table B.6 \u2013 An example of RCM task selection <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | B.8.6 Risk indices <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | B.9 Techniques for selecting between options B.9.1 General <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | B.9.2 Cost\/benefit analysis (CBA) <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | B.9.3 Decision tree analysis <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | B.9.4 Game theory <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | Table B.7 \u2013 Example of a game matrix <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | B.9.5 Multi-criteria analysis (MCA) <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | B.10 Techniques for recording and reporting B.10.1 General <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | B.10.2 Risk registers <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | B.10.3 Consequence\/likelihood matrix (risk matrix or heat map) <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Figure B.15 \u2013 Part example of table defining consequence scales Figure B.16 \u2013 Part example of a likelihood scale <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Figure B.17 \u2013 Example of consequence\/likelihood matrix <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | B.10.4 S-curves Figure B.18 \u2013 Probability distribution function and cumulative distribution function <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Risk management. Risk assessment techniques<\/b><\/p>\n |