{"id":454767,"date":"2024-10-20T09:37:17","date_gmt":"2024-10-20T09:37:17","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-ptc-4-4-2023\/"},"modified":"2024-10-26T17:51:38","modified_gmt":"2024-10-26T17:51:38","slug":"asme-ptc-4-4-2023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-ptc-4-4-2023\/","title":{"rendered":"ASME PTC 4.4 2023"},"content":{"rendered":"

The object of this Code is to establish procedures for conducting performance tests of Heat Recovery Steam Generators (HRSGs) used to recover gas turbine exhaust energy. The steam generator may include supplemental firing. This Code provides standard test procedures yielding the highest level of accuracy consistent with current engineering knowledge and practice.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
7<\/td>\nNOTICE <\/td>\n<\/tr>\n
8<\/td>\nFOREWORD <\/td>\n<\/tr>\n
9<\/td>\nASME PTC COMMITTEE ROSTER <\/td>\n<\/tr>\n
10<\/td>\nCORRESPONDENCE WITH THE PTC COMMITTEE <\/td>\n<\/tr>\n
12<\/td>\nSection 1 Object, Scope, and References
1-1 OBJECT
1-2 SCOPE
1-3 TEST UNCERTAINTY
1-4 REFERENCES <\/td>\n<\/tr>\n
14<\/td>\nSection 2 Definitions of Terms, Symbols, and Conversion Factors
2-1 DEFINITIONS <\/td>\n<\/tr>\n
16<\/td>\n2-2 SYMBOLS
2-3 CONVERSION FACTORS
2-4 DESCRIPTIVE FIGURES <\/td>\n<\/tr>\n
17<\/td>\nTables
Table 2-2-1 Symbols Used in ASME PTC 4.4 <\/td>\n<\/tr>\n
19<\/td>\nTable 2-3-1 Conversion Factors <\/td>\n<\/tr>\n
21<\/td>\nFigures
Figure 2-4-1 Typical GT HRSG Diagram <\/td>\n<\/tr>\n
22<\/td>\nFigure 2-4-2 Typical Three-Pressure-Level HRSG With Supplementary Firing <\/td>\n<\/tr>\n
23<\/td>\nFigure 2-4-3 Typical Two-Pressure-Level HRSG With Feedwater Heater and Supplementary Firing <\/td>\n<\/tr>\n
24<\/td>\nFigure 2-4-4 Typical Single-Pressure-Level HRSG With Feedwater Heater and Supplementary Firing <\/td>\n<\/tr>\n
25<\/td>\nTable 2-4-1 Legend for Figures 2-4-1 Through 2-4-4 <\/td>\n<\/tr>\n
26<\/td>\nSection 3 Guiding Principles
3-1 INTRODUCTION
3-2 PLANNING FOR THE TEST
3-2.1 Test Procedure
3-2.2 Responsibilities of Parties
3-2.3 Test Boundary
Table 3-1-1 Typical Ranges of Uncertainties <\/td>\n<\/tr>\n
27<\/td>\n3-2.4 Required Measurements
3-2.5 Design, Construction, and Startup Considerations
3-3 PRIOR AGREEMENTS <\/td>\n<\/tr>\n
28<\/td>\n3-4 TEST PREPARATIONS
3-4.1 Schedule of Test Activities
3-4.2 Test Apparatus
3-4.3 Test Personnel
3-4.4 Equipment Inspection <\/td>\n<\/tr>\n
29<\/td>\n3-4.5 Preliminary Run
3-4.6 Documentation of Correction Methodology
3-5 CONDUCTING THE TEST
3-5.1 Starting and Stopping Tests and Test Runs
3-5.2 Methods of Operation Before and During Tests <\/td>\n<\/tr>\n
30<\/td>\n3-5.3 Adjustments Before and During the Test
Table 3-5.2.2-1 Suggested Maximum Permissible Variations From Design Conditions
Table 3-5.3-1 Suggested Maximum Permissible Variations in Test Conditions <\/td>\n<\/tr>\n
31<\/td>\n3-5.4 Application of Corrections
3-5.5 Duration of Runs
3-5.6 Number of Test Runs
3-5.7 Number of Readings
3-6 CALCULATION, ANALYSIS, AND REPORTING OF RESULTS
3-6.1 Causes for Rejection of Readings
3-6.2 Repeatability of Test Runs <\/td>\n<\/tr>\n
32<\/td>\n3-6.3 Comparison of Capacity From GT and HRSG Heat Balances
3-6.4 Test Uncertainty
Figure 3-6.2-1 Repeatability of Runs <\/td>\n<\/tr>\n
33<\/td>\n3-6.5 Test Report <\/td>\n<\/tr>\n
34<\/td>\nSection 4 Instruments and Methods of Measurement
4-1 INTRODUCTION
4-2 GENERAL
4-2.1 Supplements
4-2.2 Location and Identification of Instruments
4-2.3 Sources of Error
4-2.4 Instrument Calibration <\/td>\n<\/tr>\n
36<\/td>\n4-2.5 Plant Instrumentation
4-2.6 Redundant Instrumentation
4-3 TEMPERATURE MEASUREMENT
4-3.1 General
4-3.2 Measurement Systematic Uncertainty for Temperature <\/td>\n<\/tr>\n
37<\/td>\n4-3.3 Recommended Temperature Measurement Devices
Table 4-3.2-1 List of Potential Sources and Typical Ranges of Uncertainties <\/td>\n<\/tr>\n
39<\/td>\nFigure 4-3.3.2.1-1 Four-Wire RTDs
Figure 4-3.3.2.2-1 Three-Wire RTDs <\/td>\n<\/tr>\n
40<\/td>\n4-3.4 Calibration of Primary Parameter Temperature Measurement Devices
4-3.5 Temperature Scale
4-3.6 Typical Applications <\/td>\n<\/tr>\n
42<\/td>\n4-4 PRESSURE MEASUREMENT
4-4.1 General <\/td>\n<\/tr>\n
43<\/td>\n4-4.2 Measurement Systematic Uncertainty for Pressure
4-4.3 Recommended Pressure Measurement Devices
Table 4-4.2-1 Potential Pressure Systematic Uncertainty Limits <\/td>\n<\/tr>\n
44<\/td>\n4-4.4 Absolute Pressure Measurements <\/td>\n<\/tr>\n
45<\/td>\n4-4.5 Gage Pressure Measurements <\/td>\n<\/tr>\n
46<\/td>\n4-4.6 Differential Pressure Measurements
4-4.7 Air and Gas \u2014 Static and Differential Pressure <\/td>\n<\/tr>\n
47<\/td>\n4-4.8 Steam and Water \u2014 Static and Differential Pressure
4-4.9 Barometric Pressure
Figure 4-4.6.2-1 Five-Way Manifold
Figure 4-4.6.2-2 Water Leg Correction for Flow Measurement <\/td>\n<\/tr>\n
48<\/td>\n4-5 FLOW MEASUREMENT
4-5.1 General
4-5.2 Flowmeters
4-5.3 Air and Exhaust Gas
Table 4-5.2-1 Maximum Allowable Flow Measurement Uncertainty <\/td>\n<\/tr>\n
49<\/td>\n4-5.4 Liquid Fuel
4-5.5 Gaseous Fuel
4-6 LIQUID AND GASEOUS FUEL SAMPLING
4-6.1 General
4-6.2 Measurement Systematic Uncertainty for Sampling
4-6.3 Methods of Liquid or Gas Sampling
4-6.4 Fuel Analysis
4-6.5 Methods of Fuel Analysis <\/td>\n<\/tr>\n
50<\/td>\n4-7 POWER MEASUREMENT
4-8 DATA COLLECTION AND HANDLING
4-8.1 Data Collection and Calculation Systems
4-8.2 Data Management
4-8.3 Construction of Data Collection Systems <\/td>\n<\/tr>\n
51<\/td>\nSection 5 Calculations
5-1 INTRODUCTION
5-1.1 General Discussion
5-1.2 Data Reduction
5-2 INTERMEDIATE CALCULATIONS
5-2.1 Air Composition Calculations <\/td>\n<\/tr>\n
54<\/td>\n5-2.2 Molar Flow Change Due to Fuel Gas Combustion
Table 5-2.2.3-1 Combustion Ratios <\/td>\n<\/tr>\n
55<\/td>\n5-2.3 Molar Flow Change Due to Fuel Oil Combustion <\/td>\n<\/tr>\n
56<\/td>\n5-2.4 Fuel Gas Heating Value
Table 5-2.4.3-1 Fuel Compound Heating Values <\/td>\n<\/tr>\n
57<\/td>\n5-2.5 Fuel Oil Heating Value
5-2.6 Gas Enthalpy <\/td>\n<\/tr>\n
59<\/td>\nTable 5-2.4.4-1 Gas Enthalpy Correlation Constants <\/td>\n<\/tr>\n
61<\/td>\n5-2.7 GT Gas Composition
5-2.8 Desuperheater Spray Water Flow by Heat Balance <\/td>\n<\/tr>\n
62<\/td>\n5-2.9 Extraction Flow by Heat Balance
5-3 GAS FLOW BY HRSG ENERGY BALANCE
5-3.1 HRSG Gas Flow Calculations <\/td>\n<\/tr>\n
64<\/td>\n5-3.2 Duct Burner Gas Composition
5-3.3 HRSG Heat Loss <\/td>\n<\/tr>\n
65<\/td>\n5-4 GAS FLOW BY GT ENERGY BALANCE
5-5 CORRECTION OF TEST CONDITIONS TO GUARANTEE
5-5.1 Correction of Steam Flow for Superheat
5-5.2 Capacity <\/td>\n<\/tr>\n
66<\/td>\n5-5.3 Duct Burner Fuel Flow
5-5.4 Gas-Side Pressure Drop <\/td>\n<\/tr>\n
67<\/td>\nFigure 5-5.2-1 Measured Capacity Comparison to Predicted Capacity <\/td>\n<\/tr>\n
68<\/td>\n5-5.5 Steam-Side Pressure Drop <\/td>\n<\/tr>\n
69<\/td>\nSection 6 Report of Results
6-1 SECTION 1: EXECUTIVE SUMMARY
6-2 SECTION 2: INTRODUCTION
6-3 SECTION 3: TEST DATA
6-4 SECTION 4: DATA REDUCTION, CORRECTIONS, AND RESULTS
6-5 SECTION 5: APPENDICES <\/td>\n<\/tr>\n
70<\/td>\nSection 7 Test Uncertainty
7-1 INTRODUCTION
7-2 PRINCIPLES OF AN UNCERTAINTY ANALYSIS
7-3 PRETEST UNCERTAINTY ANALYSIS
7-4 POST-TEST UNCERTAINTY ANALYSIS
7-5 INPUTS FOR AN UNCERTAINTY ANALYSIS <\/td>\n<\/tr>\n
71<\/td>\n7-6 WEIGHTED CAPACITY
7-6.1 General
7-6.2 Data Required
7-6.3 Calculations
7-7 ADDITIONAL CONSIDERATIONS <\/td>\n<\/tr>\n
72<\/td>\nNONMANDATORY APPENDICES
NONMANDATORY APPENDIX A BYPASS DAMPER LEAKAGE
A-1 GENERAL
A-2 DAMPER LEAKAGE
A-3 LEAKAGE RATE <\/td>\n<\/tr>\n
73<\/td>\nNONMANDATORY APPENDIX B FUEL SENSIBLE HEAT
B-1 INTRODUCTION
B-2 FUEL OIL <\/td>\n<\/tr>\n
74<\/td>\nNONMANDATORY APPENDIX C HRSG HEAT LOSS
C-1 HRSG HEAT LOSS
C-2 INSULATED CASING DESIGN CRITERIA <\/td>\n<\/tr>\n
75<\/td>\nTable C-2-1 Physical Properties of Example Gas Composition <\/td>\n<\/tr>\n
76<\/td>\nNONMANDATORY APPENDIX D UNCERTAINTY SAMPLE CALCULATION
D-1 INTRODUCTION
D-2 BASICS OF AN UNCERTAINTY ANALYSIS <\/td>\n<\/tr>\n
77<\/td>\nD-3 EXAMPLE 1: FEEDWATER FLOW UNCERTAINTY ANALYSIS
D-4 EXAMPLE 2: PREDICTED HP STEAM FLOW SENSITIVITIES AND UNCERTAINTY BY THE HRSG ENERGY BALANCE METHOD
D-5 EXAMPLE 3: PREDICTED HP STEAM FLOW SENSITIVITIES AND UNCERTAINTY BY THE GT ENERGY BALANCE METHOD
D-6 EXAMPLE 4: HP STEAM FLOW UNCERTAINTY BY WEIGHTED AVERAGE <\/td>\n<\/tr>\n
78<\/td>\nFigure D-3-1 Sensitivity Calculation Table for the Measured HP Steam Flow Uncertainty Example <\/td>\n<\/tr>\n
79<\/td>\nFigure D-3-2 Calculation Table for the Measured HP Steam Flow Post-Test Uncertainty Example <\/td>\n<\/tr>\n
80<\/td>\nFigure D-4-1 Sensitivity Calculation Table for the Predicted HP Steam Flow Uncertainty Example \u2014 HRSG Energy Balance Method <\/td>\n<\/tr>\n
81<\/td>\nFigure D-4-2 Calculation Table for the Predicted HP Steam Flow Uncertainty Example \u2014 HRSG Energy Balance Method <\/td>\n<\/tr>\n
83<\/td>\nFigure D-5-1 Sensitivity Calculation Table for the Predicted HP Steam Flow Uncertainty Example \u2014 GT Energy Balance Method <\/td>\n<\/tr>\n
85<\/td>\nFigure D-5-2 Calculation Table for the Predicted HP Steam Flow Uncertainty Example \u2014 GT Energy Balance Method <\/td>\n<\/tr>\n
87<\/td>\nTable D-6-1 Example of Uncertainty Weighted Average in Determination of the Predicted HP Steam Flow Using Both the HRSG and GT Energy Balance Methods <\/td>\n<\/tr>\n
88<\/td>\nTable E-1-1 Main Sheet: Working Fluid Data
NONMANDATORY APPENDIX E SAMPLE CALCULATIONS
E-1 CALCULATION WORKSHEETS <\/td>\n<\/tr>\n
89<\/td>\nFigure E-1-1 Duty Summary Table <\/td>\n<\/tr>\n
90<\/td>\nFigure E-1-2 Sheet A: Air Composition <\/td>\n<\/tr>\n
91<\/td>\nFigure E-1-3 Sheet C: Fuel Gas Combustion Mole Change <\/td>\n<\/tr>\n
93<\/td>\nFigure E-1-4 Sheet E: Inlet Gas Composition <\/td>\n<\/tr>\n
94<\/td>\nFigure E-1-5 Sheet I: Gas Enthalpy <\/td>\n<\/tr>\n
95<\/td>\nFigure E-1-6 Sheet H: Outlet Gas Composition <\/td>\n<\/tr>\n
96<\/td>\nFigure E-1-7 Sheet J: Air Enthalpy <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

ASME PTC 4.4-2023 Gas Turbine Heat Recovery Steam Generators<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ASME<\/b><\/a><\/td>\n2023<\/td>\n98<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":454774,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2643],"product_tag":[],"class_list":{"0":"post-454767","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-asme","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/454767","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/454774"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=454767"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=454767"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=454767"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}