{"id":79023,"date":"2024-10-17T18:28:12","date_gmt":"2024-10-17T18:28:12","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asce-9780784408810-2007\/"},"modified":"2024-10-24T19:38:51","modified_gmt":"2024-10-24T19:38:51","slug":"asce-9780784408810-2007","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asce\/asce-9780784408810-2007\/","title":{"rendered":"ASCE 9780784408810 2007"},"content":{"rendered":"
This report provides up-to-date technical information and state-of-the-art research findings on the use of zero-valent iron reactive materials to remove contaminants frequently found in groundwater.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
8<\/td>\n | Table of Contents <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Chapter 1 Introduction 1.1 Historical Development of Zero-Valent Iron for Hazardous Waste Removal <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 1.2 Groundwater and Surface Water Standards <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 1.3 Comparison of the Fe[sup(0)]-Based Permeable Reactive Barriers and Pump-and-Treat Systems in Hazardous Waste Removal <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 1.4 References <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Section I: Removals of Chlorinated Aliphatic Hydrocarbons and Hexavalent Chromium Using Zero-Valent Iron Chapter 2 Removals of Chlorinated Aliphatic Hydrocarbons by Fe[sup(0)]: Full-Scale PRB vs Column Study 2.1 Introduction <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 2.2 Experimental Section <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 2.3 Data Analysis <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 2.4 Results and Discussion <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 2.5 Conclusions <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 2.6 References <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Chapter 3 Zero-Valent Iron and Organo-Clay for Chromate Removal in the Presence of Trichloroethylene 3.1 Introduction <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 3.2 Experimental Section <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 3.3 Results and Discussion <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 3.4 Conclusions 3.5 References <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Chapter 4 Competitive Effects on the Dechlorination of Chlorinated Aliphatic Hydrocarbons by Zero-Valent Iron <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 4.1 Introduction <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 4.2 Materials and Methods <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 4.3 Results and Discussion <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 4.4 Conclusions 4.5 References <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Chapter 5 Removal of Hexavalent Chromium from Groundwater Using Zero-Valent Iron Media 5.1 Introduction <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 5.2 Removal Mechanisms <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 5.3 Reaction Kinetics <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 5.4 Other In Situ Cr(VI) Removal Methods <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 5.5 Case Studies <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 5.6 Conclusions <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 5.7 References <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Section II: Removals of Nitrate and Arsenic using Zero-valent Iron Chapter 6 Aqueous Nitrate Reduction by Zero-Valent Iron Powder 6.1 Introduction <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 6.2 Experimental Section <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 6.3 Results and Discussion <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 6.4 Conclusions and Recommendations <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 6.5 References <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | Chapter 7 Removal of Nitrate from Water by a Combination of Metallic Iron Reduction and Clinoptilolite Ion Exchange Process 7.1 Introduction <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 7.2 Materials and Methods <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | 7.3 Results and Discussions <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 7.4 Summary 7.5 References <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Chapter 8 Utilization of Zero-Valent Iron for Arsenic Removal from Groundwater and Wastewater 8.1 Introduction <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 8.2 Batch Tests with Non Mine-Impacted Waters <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 8.3 Batch Test with Acid Mine Drainage <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 8.4 Effects of Competing Inorganic Anions on Arsenic Removal by Zero-Valent Iron <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 8.5 Column Tests and Field Applications <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 8.6 Mechanisms of Arsenic Removal by Zero-Valent Iron <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | 8.7 Alternative Materials of Iron and Aluminum Oxides for Arsenic Removal <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 8.8 Knowledge Gaps and Research Needs <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 8.9 Conclusions <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | 8.10 References <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Chapter 9 Removal of Arsenic from Groundwater\u2014Mechanisms, Kinetics, Field\/Pilot and Modeling Studies 9.1 Introduction <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 9.2 Mechanism of Removal and Competing Ion Effects <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 9.3 Field\/Pilot Studies and Modeling <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | 9.4 Design Considerations <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 9.5 Conclusions 9.6 References <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | Section III: Innovative Iron-based Reactive Materials Chapter 10 The Performance of Palladized Granular Iron: Enhancement and Deactivation <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | 10.1 Introduction <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 10.2 Experimental Section <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | 10.3 Results and Discussion <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 10.4 Conclusions <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 10.5 References <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | Chapter 11 Nanoscale Bimetallic Pd\/Fe Particles for Remediation of Halogenated Methanes 11.1 Introduction <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 11.2 Experimental Section <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | 11.3 Results <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | 11.4 Discussion <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 11.5 Conclusions 11.6 References <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | Chapter 12 Reduction by Bimetallic Reactive Materials Containing Zero-Valent Iron 12.1 Introduction <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 12.2 Noble Metals as Reduction Catalysts <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | 12.3 Preparation of Bimetallic Reductants <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | 12.4 Reduction Reactions of Bimetallic Materials <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | 12.5 Factors Affecting Reaction of Bimetallic Reductants <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | 12.6 Deactivation of Bimetallic Reductants <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | 12.7 Nano-sized Bimetallic Reductants <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | 12.8 Conclusions 12.9 References <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Section IV: Zero-Valent Iron Reactive Barrier: Configuration, Construction, Design Methodology, and Hydraulic Performance Chapter 13 Configuration and Construction of Zero-Valent Iron Reactive Barriers 13.1 Introduction <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | 13.2 Permeable Reactive Barrier Configurations <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | 13.3 Emplacement Techniques for Permeable Reactive Barriers <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | 13.4 Case Studies <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | 13.5 Summary 13.6 References <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | Chapter 14 Design Methodology for the Application of a Permeable Reactive Barrier for Groundwater Remediation 14.1 Introduction <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | 14.2 Preliminary Assessment <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | 14.3 Site Characterization 14.4 Reactive Media Selection <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | 14.5 Treatability Testing <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | 14.6 Hydrogeologic and Geochemical Modelings <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | 14.7 Monitoring Plan <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | 14.8 Permeable Reactive Barrier Economics <\/td>\n<\/tr>\n | ||||||
278<\/td>\n | 14.9 Summary 14.10 References <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | Chapter 15 Hydraulic Issues Related to Granular Iron Permeable Reactive Barriers 15.1 Introduction <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | 15.2 Hydraulic Characteristics of Granular Iron and Impact on PRB Design <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | 15.3 Influence of Inadequate Characterization of Plume Hydrogeology on Hydraulic Performance <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | 15.4 Influence of Construction Methods on Hydraulic Performance <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | 15.5 Influence of Long-Term Geochemical Changes on Hydraulic Performance <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | 15.6 Summary 15.7 References <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | Chapter 16 Tracer Experiments in Zero-Valent Iron Permeable Reactive Barriers 16.1 Introduction <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | 16.2 Tracer Experiments in Laboratory Columns <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | 16.3 Tracer Experiments at PRB Sites <\/td>\n<\/tr>\n | ||||||
317<\/td>\n | 16.4 Conclusions <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | 16.5 References <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | Chapter 17 Hydraulic Studies of Zero-Valent Iron in Permeable Reactive Barriers Using Tracer Experiment 17.1 Introduction <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | 17.2 Vapokon Site Description and Fe[sup(0)] PRB Emplacement <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | 17.3 Natural Gradient Tracer Experiment for the Hydraulic Performance Monitoring of the Fe[sup(0)] PRB at Vapokon Site <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | 17.4 Results and Discussion <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | 17.5 Conclusions <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | 17.6 References <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | Appendix <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | Subject Index A B C <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | D E F G <\/td>\n<\/tr>\n | ||||||
358<\/td>\n | H I J L M N <\/td>\n<\/tr>\n | ||||||
359<\/td>\n | O P R S <\/td>\n<\/tr>\n | ||||||
360<\/td>\n | T U V W X Z <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Zero-Valent Iron Reactive Materials for Hazardous Waste and Inorganics Removal<\/b><\/p>\n |