ACI 343.1R 12:2012 Edition
$43.60
343.1R-12 Guide for the Analysis and Design of Reinforced and Prestressed Concrete Guideway Structures
Published By | Publication Date | Number of Pages |
ACI | 2012 | 38 |
This guide presents a procedure for the design and analysis of reinforced and prestressed concrete guideway structures for public transit, and design guidance for elevated transit guideways. The engineer is referred to the appropriate highway and railway bridge design codes for items not covered in this document. Keywords: cracking; deformation; fatigue; precast concrete; prestressed concrete; prestressing loads; reinforced concrete; vibration, guideway structures.
PDF Catalog
PDF Pages | PDF Title |
---|---|
3 | CONTENTS |
4 | CHAPTER 1— INTRODUCTION AND SCOPE 1.1—Introduction 1.2––Scope CHAPTER 2–– NOTATION AND DEFINITIONS 2.1—Notation |
6 | 2.2—Definitions CHAPTER 3— GENERAL DESIGN CONSIDERATIONS 3.1—Scope 3.1.1 General 3.1.2 Guideway structures |
7 | 3.1.3 Vehicles 3.2—Structural considerations 3.2.1 General 3.2.2 Concrete girder types 3.2.2.1 Precast girder construction |
8 | 3.2.2.2 Cast-in-place structures 3.2.2.3 Composite structures |
9 | 3.3—Functional considerations 3.3.1 General 3.3.2 Safety considerations |
10 | 3.3.3 Lighting 3.3.4 Drainage 3.3.5 Expansion joints and bearings 3.3.6 Durability |
11 | 3.4—Economic considerations 3.5—Urban impact 3.5.1 General 3.5.2 Physical appearance 3.5.3 Sightlines |
12 | 3.5.4 Noise suppression 3.5.5 Vibration 3.5.6 Emergency services access 3.6—Transit operations 3.6.1 General |
13 | 3.6.2 Special vehicles 3.6.3 System expansion 3.7—Structure/vehicle interaction 3.7.1 General 3.7.2 Ride quality 3.7.2.1 General 3.7.2.2 Support surface 3.7.2.2.1 Local roughness 3.7.2.2.2 Vertical misalignment 3.7.2.2.3 Camber 3.7.2.3 Steering surface |
14 | 3.7.3 Traction surfaces 3.7.4 Electrical power distribution |
15 | 3.7.5 Special equipment 3.8—Geometries 3.8.1 General 3.8.2 Standardization 3.8.3 Horizontal geometry 3.8.4 Vertical geometry 3.8.5 Superelevation 3.9—Construction considerations 3.9.1 General 3.9.2 Street closures and disruptions |
16 | 3.9.3 Guideway beam construction |
17 | 3.9.4 Shipping and delivery 3.9.5 Approval considerations 3.9.6 Engineering documents 3.10—Rails and trackwork 3.10.1 General |
18 | 3.10.2 Jointed rail 3.10.3 Continuously welded rail 3.10.3.1 General 3.10.3.2 Thermal forces 3.10.3.3 Rail breaks 3.10.3.4 Rail welding 3.10.4 Rail installation 3.10.4.1 General 3.10.4.2 Tie and ballast 3.10.4.3 Direct fixation |
19 | 3.10.4.4 Continuous structure CHAPTER 4— LOADS 4.1—General 4.1.1 Sustained loads 4.1.2 Transient loads 4.1.3 Loads due to volumetric changes 4.1.4 Exceptional loads 4.1.5 Construction loads 4.2—Sustained loads 4.2.1 Dead loads (DC + DW) 4.2.2 Other sustained loads 4.3—Transient loads 4.3.1 Live load and its derivatives 4.3.1.1 Vertical standard vehicle loads (LL) 4.3.1.2 Impact factor (IM) |
20 | 4.3.1.3 Centrifugal force (CE) 4.3.1.4 Hunting force (HF) 4.3.1.5 Longitudinal force (LF) 4.3.1.6 Service walkway load (P) 4.3.1.7 Loads on safety railing (LR) 4.3.2 Wind load (WL) 4.3.2.1 General 4.3.2.2 Design for wind |
21 | 4.3.2.3 Alternative wind load 4.3.2.4 Reference wind pressure 4.3.2.5 Wind load on slender elements and appurtenances |
22 | 4.3.3 Loads due to ice pressure (IC) 4.3.4 Loads due to stream current (WA) 4.3.4.1 Longitudinal loads 4.3.4.2 Transverse loads 4.4—Loads due to volumetric changes 4.4.1 General 4.4.2 Loads due to temperature (TU, TG) 4.4.2.1 Temperature range 4.4.2.2 Effective construction temperature 4.4.2.3 Thermal gradient effects 4.4.2.4 Coefficient of thermal expansion 4.4.3 Rail-structure interaction (FR, Fr) 4.4.3.1 Thermal rail forces |
23 | 4.4.3.2 Broken rail forces 4.4.3.3 Rail gap 4.4.4 Shrinkage in concrete (SH) 4.4.5 Creep in concrete (CR) 4.5—Exceptional loads 4.5.1 Earthquake effects (EQ) 4.5.2 Derailment load (DR) |
24 | 4.5.3 Broken rail forces (BR) 4.5.4 Collision load (CT) 4.6—Construction loads 4.6.1 General 4.6.2 Dead loads (DC + DW) 4.6.3 Live loads (L) |
25 | CHAPTER 5— LOAD COMBINATIONS, LOAD FACTORS, AND STRENGTH REDUCTION FACTORS 5.1—Scope 5.2—Basic assumptions 5.3—Service load combinations 5.4—Strength load combinations 5.4.1 General requirements |
26 | 5.4.2 Load combinations and load factors 5.4.3 Strength reduction factors (Nowak and Grouni 1983) CHAPTER 6— SERVICEABILITY DESIGN 6.1—General 6.2—Basic assumptions 6.3—Permissible stresses 6.3.1 Nonprestressed members 6.3.2 Prestressed members 6.3.2.1 Concrete 6.3.2.1.1 At transfer |
27 | 6.3.2.1.2 Service loads 6.3.2.1.3 Additional considerations 6.3.2.2 Prestressing steel 6.3.3 Partial prestressing 6.4—Loss of prestress |
28 | 6.5—Fatigue 6.5.1 General 6.5.2 Concrete 6.5.3 Nonprestressed reinforcement 6.5.4 Prestressed reinforcement |
29 | 6.6—Vibration and dynamic response 6.6.1 General 6.6.2 Deflections 6.6.3 Natural frequency |
30 | 6.6.4 Modulus of elasticity 6.7—Deformations and rotations 6.7.1 General 6.7.2 Nonprestressed members 6.7.2.1 Immediate deflection 6.7.2.2 Long-term deflection 6.7.3 Prestressed members 6.7.3.1 Immediate camber/deflection 6.7.3.2 Long-term camber/deflection |
31 | 6.8—Crack control 6.8.1 Nonprestressed members 6.8.2 Prestressed members CHAPTER 7— STRENGTH DESIGN 7.1—General design and analysis considerations 7.2—Design for flexure and axial loads 7.3—Shear and torsion 7.3.1 Introduction 7.3.2 Shear strength of reinforced concrete beams |
32 | 7.3.3 Torsional strength of reinforced concrete beams |
33 | 7.3.4 Design for shear and torsion 7.3.5 Warping torsion CHAPTER 8— REFERENCES |