Shopping Cart

No products in the cart.

ACI 343.1R 12:2012 Edition

$43.60

343.1R-12 Guide for the Analysis and Design of Reinforced and Prestressed Concrete Guideway Structures

Published By Publication Date Number of Pages
ACI 2012 38
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

This guide presents a procedure for the design and analysis of reinforced and prestressed concrete guideway structures for public transit, and design guidance for elevated transit guideways. The engineer is referred to the appropriate highway and railway bridge design codes for items not covered in this document. Keywords: cracking; deformation; fatigue; precast concrete; prestressed concrete; prestressing loads; reinforced concrete; vibration, guideway structures.

PDF Catalog

PDF Pages PDF Title
3 CONTENTS
4 CHAPTER 1— INTRODUCTION AND SCOPE
1.1—Introduction
1.2––Scope
CHAPTER 2–– NOTATION AND DEFINITIONS
2.1—Notation
6 2.2—Definitions
CHAPTER 3— GENERAL DESIGN CONSIDERATIONS
3.1—Scope
3.1.1 General
3.1.2 Guideway structures
7 3.1.3 Vehicles
3.2—Structural considerations
3.2.1 General
3.2.2 Concrete girder types
3.2.2.1 Precast girder construction
8 3.2.2.2 Cast-in-place structures
3.2.2.3 Composite structures
9 3.3—Functional considerations
3.3.1 General
3.3.2 Safety considerations
10 3.3.3 Lighting
3.3.4 Drainage
3.3.5 Expansion joints and bearings
3.3.6 Durability
11 3.4—Economic considerations
3.5—Urban impact
3.5.1 General
3.5.2 Physical appearance
3.5.3 Sightlines
12 3.5.4 Noise suppression
3.5.5 Vibration
3.5.6 Emergency services access
3.6—Transit operations
3.6.1 General
13 3.6.2 Special vehicles
3.6.3 System expansion
3.7—Structure/vehicle interaction
3.7.1 General
3.7.2 Ride quality
3.7.2.1 General
3.7.2.2 Support surface
3.7.2.2.1 Local roughness
3.7.2.2.2 Vertical misalignment
3.7.2.2.3 Camber
3.7.2.3 Steering surface
14 3.7.3 Traction surfaces
3.7.4 Electrical power distribution
15 3.7.5 Special equipment
3.8—Geometries
3.8.1 General
3.8.2 Standardization
3.8.3 Horizontal geometry
3.8.4 Vertical geometry
3.8.5 Superelevation
3.9—Construction considerations
3.9.1 General
3.9.2 Street closures and disruptions
16 3.9.3 Guideway beam construction
17 3.9.4 Shipping and delivery
3.9.5 Approval considerations
3.9.6 Engineering documents
3.10—Rails and trackwork
3.10.1 General
18 3.10.2 Jointed rail
3.10.3 Continuously welded rail
3.10.3.1 General
3.10.3.2 Thermal forces
3.10.3.3 Rail breaks
3.10.3.4 Rail welding
3.10.4 Rail installation
3.10.4.1 General
3.10.4.2 Tie and ballast
3.10.4.3 Direct fixation
19 3.10.4.4 Continuous structure
CHAPTER 4— LOADS
4.1—General
4.1.1 Sustained loads
4.1.2 Transient loads
4.1.3 Loads due to volumetric changes
4.1.4 Exceptional loads
4.1.5 Construction loads
4.2—Sustained loads
4.2.1 Dead loads (DC + DW)
4.2.2 Other sustained loads
4.3—Transient loads
4.3.1 Live load and its derivatives
4.3.1.1 Vertical standard vehicle loads (LL)
4.3.1.2 Impact factor (IM)
20 4.3.1.3 Centrifugal force (CE)
4.3.1.4 Hunting force (HF)
4.3.1.5 Longitudinal force (LF)
4.3.1.6 Service walkway load (P)
4.3.1.7 Loads on safety railing (LR)
4.3.2 Wind load (WL)
4.3.2.1 General
4.3.2.2 Design for wind
21 4.3.2.3 Alternative wind load
4.3.2.4 Reference wind pressure
4.3.2.5 Wind load on slender elements and appurtenances
22 4.3.3 Loads due to ice pressure (IC)
4.3.4 Loads due to stream current (WA)
4.3.4.1 Longitudinal loads
4.3.4.2 Transverse loads
4.4—Loads due to volumetric changes
4.4.1 General
4.4.2 Loads due to temperature (TU, TG)
4.4.2.1 Temperature range
4.4.2.2 Effective construction temperature
4.4.2.3 Thermal gradient effects
4.4.2.4 Coefficient of thermal expansion
4.4.3 Rail-structure interaction (FR, Fr)
4.4.3.1 Thermal rail forces
23 4.4.3.2 Broken rail forces
4.4.3.3 Rail gap
4.4.4 Shrinkage in concrete (SH)
4.4.5 Creep in concrete (CR)
4.5—Exceptional loads
4.5.1 Earthquake effects (EQ)
4.5.2 Derailment load (DR)
24 4.5.3 Broken rail forces (BR)
4.5.4 Collision load (CT)
4.6—Construction loads
4.6.1 General
4.6.2 Dead loads (DC + DW)
4.6.3 Live loads (L)
25 CHAPTER 5— LOAD COMBINATIONS, LOAD FACTORS, AND STRENGTH REDUCTION FACTORS
5.1—Scope
5.2—Basic assumptions
5.3—Service load combinations
5.4—Strength load combinations
5.4.1 General requirements
26 5.4.2 Load combinations and load factors
5.4.3 Strength reduction factors (Nowak and Grouni 1983)
CHAPTER 6— SERVICEABILITY DESIGN
6.1—General
6.2—Basic assumptions
6.3—Permissible stresses
6.3.1 Nonprestressed members
6.3.2 Prestressed members
6.3.2.1 Concrete
6.3.2.1.1 At transfer
27 6.3.2.1.2 Service loads
6.3.2.1.3 Additional considerations
6.3.2.2 Prestressing steel
6.3.3 Partial prestressing
6.4—Loss of prestress
28 6.5—Fatigue
6.5.1 General
6.5.2 Concrete
6.5.3 Nonprestressed reinforcement
6.5.4 Prestressed reinforcement
29 6.6—Vibration and dynamic response
6.6.1 General
6.6.2 Deflections
6.6.3 Natural frequency
30 6.6.4 Modulus of elasticity
6.7—Deformations and rotations
6.7.1 General
6.7.2 Nonprestressed members
6.7.2.1 Immediate deflection
6.7.2.2 Long-term deflection
6.7.3 Prestressed members
6.7.3.1 Immediate camber/deflection
6.7.3.2 Long-term camber/deflection
31 6.8—Crack control
6.8.1 Nonprestressed members
6.8.2 Prestressed members
CHAPTER 7— STRENGTH DESIGN
7.1—General design and analysis considerations
7.2—Design for flexure and axial loads
7.3—Shear and torsion
7.3.1 Introduction
7.3.2 Shear strength of reinforced concrete beams
32 7.3.3 Torsional strength of reinforced concrete beams
33 7.3.4 Design for shear and torsion
7.3.5 Warping torsion
CHAPTER 8— REFERENCES
ACI 343.1R 12
$43.60