{"id":111298,"date":"2024-10-18T16:08:54","date_gmt":"2024-10-18T16:08:54","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-c62-23-1995\/"},"modified":"2024-10-24T22:01:00","modified_gmt":"2024-10-24T22:01:00","slug":"ieee-c62-23-1995","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-c62-23-1995\/","title":{"rendered":"IEEE C62.23 1995"},"content":{"rendered":"
New IEEE Standard – Active. This standard consolidates most electric utility power industry practices, accepted theories, existing standards\/guides, definitions, and technical references as they specifically pertain to surge protection of electric power generating plants. Where technical information is not readily available, guidance is provided to aid toward proper surge protection and to reduce interference to communication, control, and protection circuits due to surges and other overvoltages. It has to be recognized that this application guide approaches the subject of surge protection from a common or generalized application viewpoint. Complex applications of surge protection practices may require specialized study by experienced engineers.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
3<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | IEEE Application Guide for Surge Protection of Electric Generating Plants 1. Overview <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Figure 1\u2014 Power generating plant block diagram <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Figure 2\u2014 Power generating plant simplified one-line diagram 2. References <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 3. Definitions 3.1 back flashover: A flashover of insulation resulting from a lightning stroke to part of a netw… 3.2 counterpoise: A conductor or system of conductors arranged beneath the line; located on, abov… 3.3 coupling factor: The ratio of the induced voltage to the inducing voltage on parallel conduct… (1) 3.4 coupling wire: A conductor attached to the transmission line structure and below the phase wi… 3.5 ground potential rise: The voltage that a station grounding grid may attain relative to a dis… 3.6 overhead groundwire (lightning protection): Grounded wire or wires placed above phase conduct… 3.7 remote earth (potential): The location outside the influence of local grounds. Always assumed… 3.8 shielding angle: The angle between a vertical line through the overhead ground wire and a lin… 3.9 shield wire (electromagnetic fields): A wire employed to reduce the effects on electric suppl… 3.10 GPR: Acronym for ground potential rise. See: 3.5. 4. Power lines 4.1 Scope <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4.2 Protection of transmission lines 4.2.1 Direct lightning strokes <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Figure 3\u2014 Stroke current diverted to ground 4.2.1.1 Overhead groundwires and coupling wires <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Figure 4\u2014 A guide for EHV line shielding angles proposed by Armstrong and Whitehead <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | Figure 5\u2014 Probability of shielding failure versus shielding angle between grounds <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 4.2.1.2 Tower footing resistance 4.2.1.3 Counterpoise wires <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 4.2.1.4 Surge arresters\u2014transmission lines 4.2.1.4.1 High towers 4.2.1.4.2 Unshielded lines 4.2.2 Switching surges <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | a) Surge arresters b) Breakers with closing resistors (see [B29]) c) Shunt reactors and potential transformers (see [B48]) d) Operating restrictions e) Shorter lines by adding intermediate switching stations f) Breaker timing 4.3 Protection of distribution lines 4.3.1 Lightning strokes <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 6\u2014 Switching surge strength for tower window gaps <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 4.3.2 Switching surges 4.3.3 Ferroresonance 4.3.4 Arrester selection 4.3.5 Shielding <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5. Switchyard 5.1 Scope 5.2 Equipment protection 5.2.1 Direct lightning stroke protection of switchyard equipment <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.2.2 Incoming surges from transmission and distribution lines 5.2.2.1 Protection of directly connected equipment a) Shunt reactors. Internal winding failures in shunt reactors can be considered catastrophic. Th… b) Insulated power cables. Breakdown of cable insulation requires extensive outage for repair at … c) Coupling capacitor voltage transformers (CCVTs). The capacitor stack of a CCVT is generally co… d) Wave traps. In general, no phase-to-ground protection is provided for this equipment since fla… e) Voltage and wound-type current transformers. Internal winding flashovers usually result in per… f) Disconnecting switches. No surge protection is recommended here, since most flashovers to grou… g) Circuit breakers. Closed circuit breakers are usually protected by their proximity to the surg… h) Transformers. The most effective location of surge arresters is at the terminals of the transf… 5.2.3 Internally generated surges <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.2.3.1 Transformer energization 5.2.3.2 Transformer de-energization 5.2.3.3 Reactor switching 5.2.3.4 Capacitor switching 5.2.3.5 Line faults 5.2.3.6 De-energizing bus sections with disconnects <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5.2.3.7 Energizing potential transformers 5.2.3.8 Line switching 5.3 Controls\/Communication 5.3.1 Direct lightning strokes 5.3.2 Incoming surges 5.3.2.1 Control systems <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.3.2.2 Communication systems a) Fiber-optic communication systems. Fiber optic cables with nonmetallic armor or strength membe… b) Twisted-pair communication systems. One way to reduce the effect between two different earth- … c) Coaxial cable lines. Coaxial cable lines are subject to two possible hazards from surge curren… d) Computer communication lines. Computer data lines are either twisted pair or coaxial in nature… 5.3.3 Internally generated surges 5.3.3.1 Control systems 5.3.3.2 Communication systems <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 5.3.3.3 Electrostatic discharge 5.3.3.4 Power requirements 5.3.4 Ground potential rise <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.3.4.1 Communication and power circuit coupling a) H-field coupling (electromagnetic). H-field coupling is significant when power and telecommuni… b) E-field coupling (electrostatic). E-field coupling is significant only when data and communica… 5.3.4.2 Lightning-induced voltages in control cables <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.3.5 Electromagnetic interference (EMI) 5.3.5.1 Coupled and radiated EMI 5.3.5.2 Sources of interference <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 5.3.5.3 Levels of transient noise <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 5.3.5.4 Circuits and devices at risk 5.3.5.5 Protective measures and devices for EMI 5.3.5.5.1 Effect on EMI by proper grounding in switchyards 5.3.5.5.2 Coupling capacitor voltage transformers (CCVTs) 5.3.5.5.3 Cable shielding, grounding, and routing <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 5.3.5.5.4 Protective devices 5.3.5.5.5 Communication circuit protection 5.3.5.6 Shielding, grounding, and penetration of control buildings 5.3.5.6.1 Shielding <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 5.3.5.6.2 Grounding a) Single-point guidelines for a multipoint grounding system. To establish an interference-free r… b) Safety grounding requirements. A single connection between the power distribution system to th… c) Communication lines. The radial grounding connections to computer, communication, and control … d) Penetrations\u2014other miscellaneous utilities. Water lines that provide convenience facilities to… 6. Power plant 6.1 Scope <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6.2 Equipment protection 6.2.1 Direct lightning strokes 6.2.1.1 Indoor equipment 6.2.1.2 Outdoor equipment 6.2.2 Incoming surges 6.2.2.1 Sources of incoming surges <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6.2.2.2 Protection of equipment from incoming surges 6.2.2.2.1 Transformers 6.2.2.2.2 Rotating machines 6.2.2.2.3 Switchgear 6.2.2.2.4 Controls, instrumentation, and telecommunications equipment 6.2.3 Internally generated surges 6.2.3.1 Sources of internally generated surges <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.2.3.1.1 Capacitance switching 6.2.3.1.2 Fault interruption by a vacuum interrupter or fuse 6.2.3.1.3 Insulation breakdown 6.2.3.1.4 Motor switching <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 6.2.3.2 Protection of equipment from internally generated surges 6.2.3.2.1 Rotating machinery 6.2.3.2.2 Transformers (other than the unit auxiliaries and start-up transformer) 6.2.3.2.3 Switchgear, motor control centers, and other distribution buses 6.2.4 Ground potential rise 6.3 Controls\/Communication 6.3.1 Direct lightning strokes <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 6.3.2 Incoming surges 6.3.2.1 Characteristics of incoming surges 6.3.2.2 Coupling of incoming surges 6.3.2.3 Protection 6.3.3 Internally generated surges <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 6.3.3.1 Control systems 6.3.3.2 Control equipment 6.3.3.3 Communication equipment 6.3.4 Ground potential rise 6.3.5 EMI <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 6.3.5.1 Coupled and radiated EMI 6.3.5.2 Sources of interference 6.3.5.3 Levels of transient noise <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 6.3.5.4 Circuits and devices at risk 6.3.5.5 Protective measures and devices for EMI 6.3.5.5.1 Effect of grounding on EMI <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 6.3.5.5.2 Shielding, grounding, and routing of cables 6.3.5.5.3 Protective devices 6.3.5.5.4 Communication circuit protection 6.3.5.6 Shielding and grounding of power plant buildings 6.3.5.6.1 Shielding <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 6.3.5.6.2 Grounding a) Single-point guidelines for a multipoint grounding system. To establish an interference-free g… b) Communication lines. Grounding connections for communication circuits should be physically bro… 7. Remote ancillary facilities 7.1 Scope 7.2 Indoor equipment 7.3 Outdoor equipment a) Surges are induced on the underground cable and are conducted to the motor through the power c… b) Lightning strikes in the vicinity of the motors elevate the ground potential, and therefore th… <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Annex A\u2014Soil resistivity (informative) Table A1\u2014 Soil resistivity <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Annex B\u2014Bibliography (informative) [B1] AIEE Committee Report, \u201cA Method of Estimating Lightning Performance of Transmission Lines,\u201d\u009d… [B2] AIEE Committee Report, \u201cSwitching Surges\u2014Part I\u2014Phase to Ground Voltages,\u201d\u009d AIEE Transactions… [B3] AIEE General Systems Subcommittee, \u201cPower System Overvoltages Produced by Faults and Switchi… [B4] EEI Publication No. 68-900, EHV Transmission Line Reference Book. Washington, DC: Edison Ele… [B5] EPRI EL-2982, Project 1359-2, \u201cMeasurement and Characterization of Substation Electromagneti… [B6] FIPS Publication 94, \u201cGuideline on Electrical Power for ADP Installations,\u201d\u009d National Institu… [B7] IEEE P998\/D5, Draft Guide For Direct Lightning Stroke Shielding of Substations. [B8] IEEE Committee Report No. 77-8L0100-8-PWR, \u201cBibliography on Insulator Contamination.\u201d\u009d [B9] IEEE Committee Report (IEEE Power Systems Communication Committee), \u201cA Guide for the Protect… [B10] IEEE Committee Report, \u201cA Simplified Method for Estimating Lightning Performance of Transmi… [B11] IEEE Committee Report, \u201cSwitching Surges\u2014Part II\u2014Selection of Typical Waves for Insulation … [B12] IEEE Committee Report, \u201cSwitching Surges\u2014Part III\u2014Field and Analyzer Results for Transmissi… [B13] IEEE Interim Report (IEEE Power Systems Communication Committee), \u201cThe Isolation Concept fo… [B14] IEEE Interim Report (IEEE Power Systems Communication Committee), \u201cThe Neutralizing Transfo… <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | [B15] IEEE Power System Relaying Committee, \u201cSummary of the Guide for the Grounding of Instrument… [B16] IEEE Power System Relaying Committee, \u201cVoltage Surges in Relay Control Circuits, Interim Re… [B17] IEEE Surge-Protective Devices Committee, \u201cBibliography on Power Generating Plants Surge Pro… [B18] IEEE Task Force Report, \u201cInvestigations and Evaluation of Lightning Protective Methods for … [B19] IEEE Task Force Report, \u201cInvestigations and Evaluation of Lightning Protective Methods for … [B20] IEEE Tutorial Course 79 EH0144-6 PWR, \u201cSurge Protection in Power Systems,\u201d\u009d Chapter 5, pp. 6… [B21] NUREG\/CR-2252, National Thunderstorm Frequencies for the Contiguous United States. Ashevill… [B22] Allen, J. E. and Waldorf, S. K., \u201cArcing Ground Test on a Normally Ungrounded 13-kV 3-Phase… [B23] Amchin, H. K. and Curto, R. T., \u201cSwitching Surge Voltages Due to the Interruption of Transf… [B24] Anderson, J. G., Johnson, I. B., Price, W. S., and Schlomann, R. H., \u201c1956 Lightning Field … [B25] Armstrong, H. R., DeVerka, E. F., and Stoelding H. O., \u201cImpulse Studies on Distribution Lin… [B26] Armstrong, H. R. and Whitehead, E. R., \u201cField and Analytical Studies of Transmission Line S… [B27] Armstrong, H. R. and Whitehead, E. R., \u201cA Lightning Stroke Pathfinder,\u201d\u009d IEEE Transactions o… [B28] Azuma, H. and Kawai, M., \u201cDesign and Performance of Unbalanced Insulation in Double Circuit… [B29] Bankoske, J. W. and Wagner, C. L., \u201cEvaluation of Surge Suppression Resistors in High Volta… [B30] Bewley, L. V., Traveling Waves on Transmission Systems, 2nd ed., Chapter 10. New York: John… <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | [B31] Block, R. The Grounds for Lightning and EMP Protection. Polyphaser Corporation, Oct. 1987. [B32] Boehne, E. W., Gaibrois, G. L., Koch, R. E., and Mikulecky, H. W., \u201cCoordination of Lightni… [B33] Boijaud, A., Jecko, B., and Reixex, A., \u201cElectromagnetic Pulse Penetration into Reinforced-… [B34] Booth, W. H., Niebuhr, W. D., Rocamora, R. G., and Wasilowski, R. B., \u201cThe Analysis And Pre… [B35] Borgvall, T., et al., \u201cVoltages in Substation Control Cables during Switching Operations,\u201d\u009d … [B36] Brown, G. W. and Thunander, S., \u201cFrequency of Distribution Arrester Discharge Currents Due … [B37] Buschart, R. J., \u201cComputer Grounding and the National Electrical Code,\u201d\u009d IEEE Transactions o… [B38] Caldecott, R., et al., \u201cHVDC Converter Station Tests in the 0.1 to 5 MHz Frequency Range,\u201d\u009d … [B39] Caswell, R. W., Griscom, S. B., et al., \u201cFive Year Field Investigation of Lightning Effects… [B40] Caswell, R. W., Johnson, I. B., et al., \u201cLightning Performance of 138 kV Twin Circuit Trans… [B41] Chadwick, J. W., \u201cProposed IEEE Surge Withstand Capability Test for Solid-State Relays,\u201d\u009d in… [B42] Champiot, G. G., \u201cDisturbances Produced by Transceivers and Walkie-Talkies,\u201d\u009d Electra, no. 8… [B43] Champiot, G. G. and Agostini, J. C., \u201cElectromagnetic Environment in a PWR Power Plant,\u201d\u009d in… [B44] Chesworth, E. T., \u201cElectromagnetic Interference Control in Structures and Buildings,\u201d\u009d EMC T… [B45] Chung, H-Y. and Moore, L.E., \u201cField Measurements of Transient Voltages on the Control Circu… [B46] Clayton, J. M. and Hileman, A. R., \u201cA Method of Estimating Lightning Performance of Distrib… <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | [B47] Clayton, J. M. and Young, F. S., \u201cEstimating Lightning Performance of Transmission Lines,\u201d\u009d … [B48] Clerici, A., Ruckstuhl, G., and Vian, A., \u201cInfluence of Shunt Reactors on Switching Surges,… [B49] Darveniza, M., Hurley, J. J., and Limbourn, G. S., \u201cDesign of Overhead Transmission Lines f… [B50] Darveniza, M., Limbourn, G. J., and Prentice, S. A., \u201cLine Design and Electrical Properties… [B51] Darveniza, M. and Sargent, M. A., \u201cThe Calculation of Double Circuit Outage Rate of Transmi… [B52] Darveniza, M. and Sargent, M. A., \u201cLightning Performance of Double Circuit Transmission Lin… [B53] Dick, E. P., et al., \u201cPractical Calculation of Switching Surges at Motor Terminals,\u201d\u009d IEEE T… [B54] Dick, E. P., et al., \u201cPrestriking Voltages Associated With Motor Breaker Closing,\u201d\u009d IEEE Tra… [B55] Durham, M. and Lockerd, C., \u201cNEC Article 725-Cost Effective Control Wiring,\u201d\u009d IEEE Transacti… [B56] Electrical Transmission and Distribution Reference Book, Chapter 17. Pittsburgh, PA: Westin… [B57] Endrenyi, J., \u201cAnalysis of Transmission Tower Potential During Ground Faults,\u201d\u009d IEEE Transac… [B58] Erickson, A. J., Meal, D. V., and Stringfellow, M. F., \u201cLightning Induced Overvoltages on O… [B59] Gaibrois, G. L., \u201cLightning Current Magnitude Through Distribution Arresters,\u201d\u009d IEEE Transac… [B60] Garton, H. L. and Stolt, H. K., \u201cField Tests and Corrective Measures for Suppression of Tra… [B61] Garton, H. L. and Stolt, H. K., \u201cProtection of Solid-State Devices from Transients,\u201d\u009d Transm… [B62] Gilman, D. W. and Whitehead, E. R., \u201cThe Mechanism of Lightning Flashover on High Voltage a… [B63] Gooding, F. H. and Slade, H. B., \u201cShielding of Communication Cables\u2014Part I on Communication… <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | [B64] Gupta, B. K., Lloyd, B. A., Stone, G. C., and Nilsson, N. E., \u201cTurn Insulation Capability o… [B65] Gupta, B. K., Nilsson, N. E., and Sharma, D. K., \u201cProtection of Motors Against High Voltage… [B66] Harvey, S. M. and Ponke, W. J., \u201cElectromagnetic Shielding of a System Computer in a 230-kV… [B67] Harvey, S. M. and Vlah, Z. J., \u201cMulti-Frequency Surge Withstand Capability Tests for Protec… [B68] Hicks, R. L. and Jones, D. E., \u201cTransient Voltages on Power Station Wiring,\u201d\u009d IEEE Transacti… [B69] Hopkinson, R. H., \u201cFerroresonant Overvoltages Due to Open Conductors,\u201d\u009d G. E. Distribution M… [B70] Jackson, D. W., \u201cSurge Protection of Rotating Machines,\u201d\u009d in IEEE Tutorial Course, Surge Pro… [B71] Johnson, I. B., Schultz, A. J., Schultz, N. R., and Shores, R. B., \u201cSome Fundamentals on Ca… [B72] Kotheimer, W. C., \u201cThe Influence of Station Design on Control Circuit Transients,\u201d\u009d in Ameri… [B73] Kotheimer, W. C. and Mankoff, L. L., \u201cElectromagnetic Interference and Solid-State Protecti… [B74] Lear, C. M., McCann, G. D., and Wagner, C. F., \u201cShielding of Substations,\u201d\u009d AIEE Transaction… [B75] Lee, R. H., \u201cGrounding of Computers and Other Similar Sensitive Equipment,\u201d\u009d IEEE Transactio… [B76] Lee, R. H., \u201cLightning Protection of Buildings,\u201d\u009d IEEE Transactions, vol. IAS-15, no. 3, pp…. [B77] Lee, R. H., \u201cProtection Zone for Buildings Against Lightning Strokes Using Transmission Lin… [B78] Lenk, D. W., Koepfinger, J. L., and Sakich, J. D., \u201cUtilization of Polymer Enclosed Interme… [B79] Lewis, W. H., \u201cRecommended Power and Signal Grounding for Control and Computer Rooms,\u201d\u009d IEEE… <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | [B80] Lewis, W. H., \u201cThe Use and Abuse of Insulated\/Isolated Grounding,\u201d\u009d IEEE Transactions on Ind… [B81] Link, H., \u201cShielding of Modern Substations Against Direct Lightning Strokes,\u201d\u009d IEEE Transact… [B82] Lishchyna, L., \u201cDiscussion of Field and Analytical Studies of Transmission Line Shielding\u2014P… [B83] McCann, G. D., \u201cThe Effect of Corona on Coupling Factors Between Ground Wires and Phase Con… [B84] Maggioli, V. J., \u201cGrounding and Computer Technology,\u201d\u009d IEEE Transactions on Industry Applica… [B85] Marieni, G. J. and Sonneman, W. K., \u201cA Review of Transient Voltages in Control Circuits,\u201d\u009d W… [B86] Masamitsu, H., \u201cA New Threat\u2014EMI Effect by Indirect ESD on Electronic Equipment,\u201d\u009d IEEE Tran… [B87] Miakopar, A. S., Elektrichesvo, no. 1, pp. 208\u2013235, 1964. [B88] Mitani, H., \u201cMagnitude and Frequency of Transient Induced Voltage in Low Voltage Control Ci… [B89] Mousa, A. M., \u201cA Computer Program For Designing the Lightning Shielding Systems of Substati… [B90] Mousa, A. M., \u201cShielding of High Voltage and Extra High Voltage Substations,\u201d\u009d IEEE Transact… [B91] Mousa, A. M. and Srivasla, K. D., \u201cThe Implications of the Electrogeometric Model Regarding… [B92] O\u2019Neil, J. and Richmond, R., \u201cMagnetic Field Penetration through Protective Metal Shields,\u201d\u009d… [B93] Osburn, J. D. M. and White, D. R. J., \u201cGrounding\u2014A Recommendation for the Future,\u201d\u009d in 1987 … [B94] Patterson, Neal A., \u201cCarrier Frequency Interference from HVDC Systems,\u201d\u009d IEEE Transactions o… [B95] Rocamora, R. G., et al., \u201cFault Clearing Overvoltages on Long Transformer Terminated Lines,… [B96] Sargent, M. A., \u201cMonte Carlo Simulation of the Lightning Performance of Overhead Shielding … <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | [B97] Smith, K. and Voorhees, A., \u201cEarth Shielding EMI-Shielded Facilities,\u201d\u009d EMC Technology, Mar…. [B98] Smith, L. E., \u201cVoltages Induced in Control Cables from Arcing 500-kV Switches,\u201d\u009d IEEE Confer… [B99] Stump, K. B., Teleander, S. H., and Wilhelm, M. R., \u201cSurge Limiters for Vacuum Circuit Brea… [B100] Sunde, E. O., Earth Conductor Effects in Transmission Systems. New York: Van Nostrand, 1949. [B101] Sutton, H. J., \u201cTransient Pickup in 500 kV Control Circuits,\u201d\u009d in American Power Conference… [B102] Tepper, E. P., \u201cShielding to Control the Electronic Environment,\u201d\u009d Electrical Systems Desig… [B103] Transmission Line Reference Book\u2014345 kV and Above, Chapters 2, 9, 11, and 12. Palo Alto, C… [B104] Tseng, F. K., et al., \u201cInstrumentation and Control in EHV Substations,\u201d\u009d IEEE Transactions … [B105] Wagner, C. F., Electrical Transmission and Distribution Reference Book, 4th ed., Pittsburg… [B106] Westinghouse Electric Corporation Relay Engineers, \u201cProtection Against Transients and Surg… [B107] Westinghouse Transmission and Distribution Handbook, Chapter 14, Section 10, p. 519, Analo… [B108] Whitehead, E. R., \u201cMechanism of Lightning Flashover,\u201d\u009d EEI RP 50, Pub. 72-900, Feb. 1971. [B109] Zinder, David A., \u201cFrequency Variable Parameters of EMI Protective Devices,\u201d\u009d EMC Technolog… [B110] Zipse, D. W., \u201cGrounding for Process Control Computers and Distributed Control Systems: Th… <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE Application Guide for Surge Protection of Electric Generating Plants<\/b><\/p>\n |