{"id":233749,"date":"2024-10-19T15:14:33","date_gmt":"2024-10-19T15:14:33","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-62433-22017\/"},"modified":"2024-10-25T09:45:13","modified_gmt":"2024-10-25T09:45:13","slug":"bs-en-62433-22017","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-62433-22017\/","title":{"rendered":"BS EN 62433-2:2017"},"content":{"rendered":"
IEC 62433-2:2017 specifies macro-models for an Integrated Circuit (IC) to simulate conducted electromagnetic emissions on a printed circuit board. The model is commonly called Integrated Circuit Emission Model – Conducted Emission (ICEM-CE). The ICEM-CE macro-model can also be used for modelling an IC-die, a functional block and an Intellectual Property (IP) block. The ICEM-CE macro-model can be used to model both digital and analogue ICs. This edition includes the following significant technical changes with respect to the previous edition: Incorporation of an XML based exchange format for model representation.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | National foreword <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA(normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1 Scope 2 Normative references 3 Terms, definitions, abbreviations and conventions 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3.2 Abbreviations 3.3 Conventions 4 Philosophy 4.1 General <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 4.2 Conducted emission from core activity (digital culprit) 4.3 Conducted emission from I\/O activity 4.4 Data exchange format Figures Figure 1 \u2013 Decomposition example of a digital IC for conducted emissions analysis <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 5 ICEM-CE basic components 5.1 General 5.2 Internal Activity (IA) 5.2.1 General Figure 2 \u2013 IA component in the case of a current source <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 5.2.2 Examples of IA 5.3 Passive Distribution Network (PDN) 5.3.1 General Figure 3 \u2013 Example of IA characteristics in the time domain Figure 4 \u2013 Example of IA characteristics in the frequency domain <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 5.3.2 Examples of PDN Figure 5 \u2013 Example of a four-terminal PDN using lumped elements <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 6 IC macro-models 6.1 Types of IC macro-models 6.2 General IC macro-model Figure 6 \u2013 Example of a seven-terminal PDN using distributed elements Figure 7 \u2013 Example of a twelve-terminal PDN using matrix representation <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6.3 Block-based IC macro-model 6.3.1 Block component Figure 8 \u2013 General IC macro-model <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.3.2 Inter-Block Coupling component (IBC) Figure 9 \u2013 Example of block component with a single IA Figure 10 \u2013 Example of block components for I\/Os <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 6.3.3 Block-based IC macro-model structure Figure 11 \u2013 Example of IBC with four internal terminals Figure 12 \u2013 Relationship between blocks and IBC <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Figure 13 \u2013 Block-based IC macro-model <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 6.4 Sub-model-based IC macro-model 6.4.1 Sub-model component Figure 14 \u2013 Example of block-based IC macro-model Figure 15 \u2013 Example of simple sub-model <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.4.2 Sub-model-based IC macro-model structure Figure 16 \u2013 Sub-model-based IC macro-model <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7 CEML format 7.1 General Figure 17 \u2013 CEML inheritance hierarchy <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 7.2 CEML structure 7.3 Global keywords 7.4 Header section <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 7.5 Lead definitions Tables Table 1 \u2013 Attributes of Lead keyword in the Lead_definitions section <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 7.6 SPICE macro-models Table 2 \u2013 Compatibility between the Mode and Type fields for correct CEML annotation Table 3 \u2013 Subckt definition <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7.7 Validity section 7.7.1 General Figure 18 \u2013 Example of a netlist file defining a sub-circuit Table 4 \u2013 Definition of the Validity section <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 7.7.2 Attribute definitions <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 7.8 PDN 7.8.1 General <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 7.8.2 Attribute definitions Table 5 \u2013 Definition of the Lead keyword for Pdn section <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Table 6 \u2013 Valid data formats and their default units in the Pdn section Table 7 \u2013 Valid file extensions in the Pdn section <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 7.8.3 Description Table 8 \u2013 Valid fields of the Lead keyword in the Pdn section <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure 19 \u2013 PDN represented as S-parameters in Touchstone format <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Table 9 \u2013 Netlist definition <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 7.9 IBC 7.9.1 General 7.9.2 Attribute definitions <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Table 10 \u2013 Differences between the Pdn and Ibc section fields Table 11 \u2013 Valid fields of the Lead keyword for IBC definition <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 7.10 IA 7.10.1 General 7.10.2 Attribute definitions Table 12 \u2013 Definition of the Lead keyword in the Ia section <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Table 13 \u2013 Voltage and Current definition Table 14 \u2013 Valid file extensions in the Ia section <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Table 15 \u2013 Definition of the Pulse keyword in the Voltage or Current section Table 16 \u2013 Base units of the Pulse section\u2019s fields <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 20 \u2013 Simulated IA waveform with corresponding parameters <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 7.10.3 Description Table 17 \u2013 Valid data formats and their default units for the Voltage and Current elements <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 8 Requirements for parameter extraction 8.1 General 8.2 Environmental extraction constraints 8.3 IA parameter extraction 8.4 PDN parameter extraction <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 8.5 IBC parameter extraction <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Annex\u00a0A (normative)Preliminary definitions for XML representation A.1 XML basics A.1.1 XML declaration A.1.2 Basic elements A.1.3 Root element <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | A.1.4 Comments A.1.5 Line terminations A.1.6 Element hierarchy A.1.7 Element attributes A.2 Keyword requirements A.2.1 General <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | A.2.2 Keyword characters A.2.3 Keyword syntax A.2.4 File structure <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Figure A.1 \u2013 Multiple XML (CEML) files Figure A.2 \u2013 XML files with data files (*.dat) <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | A.2.5 Values Figure A.3 \u2013 XML files with additional files <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Table A.1 \u2013 Valid logarithmic units <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Annex\u00a0B (normative)CEML valid keywords and usage B.1 Root element keywords <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | B.2 File header keywords <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | B.3 Validity section keywords <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | B.4 Global keywords B.5 Lead Keyword <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | B.6 Lead_definitions section attributes B.7 Macromodels section attributes <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | B.8 Pdn section keywords B.8.1 Lead element keywords <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | B.8.2 Netlist section keywords B.9 Ibc section keywords B.9.1 Lead element keywords <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | B.9.2 Netlist section keywords B.10 Ia section keywords B.10.1 Lead element keywords <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | B.10.2 Voltage section keywords <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | B.10.3 Current section keywords <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Annex\u00a0C (informative)Example of ICEM-CE macro-model in CEML format C.1 General C.2 PDN and IBC sub-model Figure C.1 \u2013 Example pin-out of a microcontroller and the modelled pins <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | C.3 IA sub-model Figure C.2 \u2013 PDN sub-model topology <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Figure C.3 \u2013 IA sub-model topology Figure C.4 \u2013 IA of digital block in frequency domain <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | C.4 Frequency domain ICEM-CE in CEML Figure C.5 \u2013 IA of digital block in time domain <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | C.5 Time domain ICEM-CE in CEML <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Annex\u00a0D (informative)Conversions between parameter types D.1 General D.2 Conversion for one-port PDN D.3 Conversion for two-port PDN Table D.1 \u2013 One-port conversion <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Table D.2 \u2013 Two-port conversion <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Annex\u00a0E (informative)Model parameter generation E.1 General E.2 Default structure and values E.2.1 General E.2.2 IA parameters <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | E.2.3 PDN parameters Table E.1 \u2013 Typical parameters for CMOS logic technologies Table E.2 \u2013 Typical number of logic gates vs. CPU technology <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | E.3 Model parameter generation from design information E.3.1 General E.3.2 IA parameters Table E.3 \u2013 R, L and C parameters for various package types <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure E.1 \u2013 Typical characterization current gate schematic Figure E.2 \u2013 Current peak during switching transition <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Figure E.3 \u2013 Example of IA extraction procedure from design Figure E.4 \u2013 Technology Influence <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure E.5 \u2013 Final current waveform for a program period Figure E.6 \u2013 Comparison between measurement and simulation <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | E.3.3 PDN parameters Figure E.7 \u2013 Example lumped element model of a package <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | E.4 Model parameter generation from measurements E.4.1 IA parameters Figure E.8 \u2013 Circuit structure of the netlist <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure E.9 \u2013 Principle of the IA computation in the frequency domain <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Figure E.10 \u2013 Process involved to model iA(t) Figure E.11 \u2013 iExt(t) measured using IEC\u00a061967-4 <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | E.4.2 PDN parameters Figure E.12 \u2013 iA(t)and iExt(t) profiles Figure E.13 \u2013 Conventional one-port S-parameter measurement <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure E.14 \u2013 Two-port method for low impedance measurement Figure E.15 \u2013 Two-port method for high impedance measurement <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure E.16 \u2013 Example of a hardware set-up used to extract the PDN parameters <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure E.17 \u2013 Miniature 50 \u2126 coaxial connectors Figure E.18 \u2013 Impedance probe using two miniature coaxial connectors Figure E.19 \u2013 Open and short terminations <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Figure E.20 \u2013 Measurement probe model Figure E.21 \u2013 De-embedding principle <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Figure E.22 \u2013 Example of a predefined PDN structure Table E.4 \u2013 Measurement configurations and extracted RLC parameters <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Figure E.23 \u2013 RL configuration <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure E.24 \u2013 RLC configuration Figure E.25 \u2013 RLC with magnetic coupling configuration Figure E.26 \u2013 Impedance seen from Vcc and Gnd <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Figure E.27 \u2013 Complete PDN component <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Figure E.28 \u2013 Set-up for correlation (left), measurement and prediction model (right) Figure E.29 \u2013 Set-up used to measure the internal decoupling capacitor <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Annex\u00a0F (informative)Decoupling capacitors optimization Figure F.1 \u2013 Equivalent schematic of the complete electronic system <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure F.2 \u2013 Impedance prediction and measurements <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Annex\u00a0G (informative)Conducted emission prediction Figure G.1 \u2013 IEC\u00a061967-4 test set-up standard Figure G.2 \u2013 Comparison between prediction and measurement <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Annex\u00a0H (informative)Conducted emission prediction at PCB level Figure H.1 \u2013 Prediction of ETVddc noise level at PCB level <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Figure H.2 \u2013 Good agreements on the noise envelope <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" EMC IC modelling – Models of integrated circuits for EMI behavioural simulation. Conducted emissions modelling (ICEM-CE)<\/b><\/p>\n |