{"id":334532,"date":"2024-10-19T23:19:36","date_gmt":"2024-10-19T23:19:36","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-2012assessingseismicperformanceirregularities-2018\/"},"modified":"2024-10-25T22:18:00","modified_gmt":"2024-10-25T22:18:00","slug":"fema-p-2012assessingseismicperformanceirregularities-2018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-2012assessingseismicperformanceirregularities-2018\/","title":{"rendered":"FEMA P 2012AssessingSeismicPerformanceIrregularities 2018"},"content":{"rendered":"
None<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | FEMA P-2012 <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | Assessing Seismic Performance of Buildings with Configuration Irregularities: Calibrating Current Standards and Practices <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Preface Preface <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Table of Contents <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | List of Figures <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | List of Tables <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Ch1: Introduction 1.1 Background <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 1.2 Overview of Irregularities Considered <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 1.3 Target Audience 1.4 Content and Organization <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Ch2: Overview of Irregularities <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 2.1 Literature Search <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 2.1.1 Observed Performance of Irregular Buildings 2.1.1.1 Earthquake-Related Fatalities 2.1.1.2 Causes of Structural Collapse Recent U.S. Earthquakes <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 1995 Kobe Earthquake <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 2010 Maule Earthquake <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 2.1.2 Treatment of Configuration Irregularities in Codes and Standards 2.1.2.1 U.S. Codes and Standards <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 2.1.2.2 International Codes <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 2.1.3 Published Research on Irregularities <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 2.2 Performance Concerns for Irregularities and Corresponding Code Requirements <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 2.3 Treatment of Irregularities in this Report <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Ch3: Archetype Design, Modeling, and Analysis Approach 3.1 Scope of Analytical Studies <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 3.2 Archetype Configurations and Designs <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 3.2.1 Steel Moment Frame Archetypes <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 3.2.2 Reinforced Concrete Moment Frame Archetypes <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 3.2.3 Reinforced Concrete Shear Wall Archetypes <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 3.3 Structural Modeling of Archetype Buildings <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 3.3.1 Steel Moment Frame Archetypes 3.3.1.1 System Modeling <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 3.3.1.2 Modeling of Beam and Column Components <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 3.3.1.3 Modeling of Joint Panel Zones <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 3.3.2 Reinforced Concrete Moment Frame Archetypes 3.3.2.1 System Modeling 3.3.2.2 Modeling of Beam and Column Components <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 3.3.2.3 Modeling of Joint Panel Zones <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 3.3.3 Reinforced Concrete Shear Wall Archetypes 3.3.3.1 System Modeling <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 3.3.3.2 Modeling of Walls using Fiber Elements <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 3.3.3.3 Material Constitutive Models for Concrete and Rebar <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 3.4 Archetype Analysis Methods <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 3.4.1 Overview of FEMA P695 Analysis Methods <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 3.4.2 Selection of Ground Motions <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 3.4.3 Incremental Dynamic Analysis <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 3.4.4 Evaluation of MCER Collapse Performance <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 3.4.5 Collapse Evaluation Using Absolute and Relative Measures of Collapse Risk <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 3.4.6 Tracking of Non-Collapse Archetype Response Parameters <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Ch4: Buildings with Torsional Irregularities [H1, H6] 4.1 Overview 4.2 Objectives of Studies and Summary of Findings <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 4.2.1 Objective 1: Evaluate ASCE\/SEI 7-16 Torsion Design Provisions 4.2.2 Objective 2: Propose Modifications to the ASCE\/SEI 7-16 Seismic Torsion Provisions 4.2.3 Summary of Findings <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 4.3 Methodology to Assess Torsion Design Provisions <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 4.4 Archetype Design Space 4.4.1 Plan Configurations <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 4.4.2 Baseline Archetypes <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 4.4.3 Proportioning the Lateral System for Seismic Design <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Method 1: Decoupled strength and stiffness Method 2: Coupled strength and stiffness 4.5 Results 4.5.1 Collapse Performance under Current Code Requirements <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 4.5.2 Observations about Torsion Design Requirements <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 4.5.3 Recommended Minimum Requirements <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 4.6 Conclusions and Recommendations <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Ch5: Concrete Wall Buildings with Vertical Irregularities [V1, V8] 5.1 Overview and Summary of Findings <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 5.2 Design Procedures and Common Irregularities <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | 5.3 Overview of Archetype Designs <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 5.4 Modeling RC Wall Response 5.4.1 Methodology Validation and Comparison Studies <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 5.4.2 Non-Simulated Failure Modes <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 5.5 Assessment of Collapse Risk 5.5.1 Overview <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 5.5.2 Results <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 5.6 Conclusions and Recommendations <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Ch6: Moment Frame Buildings with Vertical Irregularities [V1, V2, V5, V6, V7] 6.1 Overview <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 6.2 Objectives of Studies and Summary of Findings 6.2.1 Objective 1: Assess the Adequacy of ASCE\/SEI 7-16 Vertical Irregularity Provisions 6.2.2 Objective 2: Assess the Necessity for Expanding the ASCE\/SEI 7-16 Vertical Irregularity Provisions <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 6.2.3 Summary of Findings 6.3 Methodology to Assess Vertical Irregularity Design Provisions <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 6.4 Archetype Design Space by System 6.5 Studies of Weight (Mass) Irregularity [V2] <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 6.5.1 Archetype Descriptions 6.5.2 Results <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 6.5.3 Conclusion and Recommendations <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 6.6 Studies of Soft- and Weak-Story Irregularities [V1\/V5] 6.6.1 Archetype Descriptions <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 6.6.2 Results <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 6.6.3 Conclusion and Recommendations 6.7 Studies of Strong-Column\/Weak-Beam Design Provisions [V6] <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 6.7.1 Archetype Descriptions <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 6.7.2 Results <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 6.7.3 Conclusion and Recommendations 6.8 Studies of Gravity-Induced Lateral Demands [V7] 6.8.1 Previous Studies <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 6.8.2 Archetype Descriptions 6.8.3 Results <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 6.8.4 Limitations of the GILD Studies <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | 6.9 Overview of Conclusions and Recommendations <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | 6.9.1 Weight (Mass) Irregularity [V2] 6.9.2 Soft\/Weak Story Irregularity [V1\/V5] <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | 6.9.3 Strong-Column\/Weak-Beam [V6] 6.9.4 Gravity-Induced Lateral Demand [V7] <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Ch7: Discussion of Other Irregularities [H2, H3, H4, H5, V3, V4, V8] 7.1 Reentrant Corner [H2] Irregularity <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | 7.2 Diaphragm Discontinuity [H3] Irregularity <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | 7.3 Out-of-Plane Offset [H4] and In-Plane Discontinuity [V4] Irregularities <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 7.3.1 Impact of Out-Of-Plane and In-Plane Discontinuities in RC Wall Buildings <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 7.4 Nonparallel System [H5] Irregularity <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | 7.5 Vertical Geometric [V3] Irregularity 7.6 Wall Discontinuity [V8] Irregularity <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | 7.6.1 Discontinuities Associated with Initiation or Termination of Stacked Openings in Walls <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 7.6.2 Discontinuities Associated with Increased Wall Area to Capture Forces Introduced by New Structural Elements <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Ch8: Recommended Improvements 8.1 Codes and Standards 8.1.1 NEHRP Recommended Provisions and ASCE\/SEI 7-16 Revised Triggers and Prohibitions <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Revised Modeling Requirements <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Revised Design Requirements <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | Improved Commentary and Other Clarifications <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | 8.1.2 ASCE\/SEI 41-17 8.2 Future Studies and Development 8.2.1 Explicit Collapse Assessment Improvements <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | 8.2.2 Design Sensitivity Studies <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 8.2.3 Strong-Column\/Weak-Beam Requirements 8.2.4 More Detailed Considerations <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | AppA: Torsion Studies A.1 Development and Validation of Simplified 3D Models A.1.1 Nonlinear Backbones for Modeling the Seismic-Force-Resisting System <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | A.1.2 Scaling of Nonlinear Backbones <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | A.1.3 3D Modeling Approach A.1.4 Validation of Single-Story 3D Models <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | A.2 Torsional Strength Irregularity <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | A.3 Importance of Checking Drift and Stability Requirements at the Building\u2019s Edge for Torsionally Irregular Buildings <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | A.4 Rationale for Triggering Type 1a Torsional Irregularity When >75% of Strength is on One Side of the CM <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | A.5 Application of 5% Mass Offsets to Simulate Accidental Torsion with Modal Response Spectrum Analysis <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | A.6 Explanation of Why Some Trends in the Results Plots Double Back on Themselves <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | AppB: Concrete Wall Studies B.1 Past Investigations of Concrete Walls with Irregularities B.1.1 Damage of Concrete Walls with Irregularities in Past Earthquakes <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | B.1.2 Quantification of Vertical Discontinuities in Concrete Walls Using Field Data <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | B.1.3 Laboratory Test Results for Concrete Walls with Vertical Irregularities <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | B.2 Investigation of Vertical Irregularity Using Nonlinear Continuum Analysis <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | B.3 RC Wall Building Design Process <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | B.3.1 Building Prototype <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | B.3.2 Wall Design <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | B.3.3 Design of Wall Panel Zone <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | B.3.4 Design of Coupling Beams <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | B.3.5 RC Wall Building Design Summaries <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | B.4 Modeling Wall Response B.4.1 ATENA <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | B.4.2 OpenSees <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | B.5 Preliminary Analyses to Investigate Modeling Assumptions and Identify a Preferred Modeling Approach <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | B.5.1 Modeling Assumptions Employed for OpenSees and ATENA Analyses <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | B.5.2 Pushover Analyses to Compare OpenSees and ATENA Models <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | B.5.3 Dynamic Analyses to Compare OpenSees Displacement-Based and Force-Based Beam-Column Element Models <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | B.5.4 Dynamic Analyses to Compare Models Comprising OpenSees Displacement-Based Beam-Column Elements and SFI-MVLEM <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | B.5.5 Identification of a Preferred Modeling Approach for Assessing the Impact of Vertical Irregularities on the Collapse Risk Posed by RC Wall Buildings <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | B.6 Analysis Results <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | AppC: Steel Moment Frame Studies C.1 Steel Moment Frame Baseline Designs <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | C.1.1 Low Seismicity Zone (SDC Bmax) \u2013 Steel Ordinary Moment Frame Design <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | C.1.1.1 3-Story OMF Building <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | C.1.1.2 9-Story OMF Building <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | C.1.1.3 20-Story OMF Building <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | C.1.2 High Seismicity Zone (SDC Dmax) \u2013 Steel Special Moment Frame Design <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | C.1.2.1 3-Story SMF Building <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | C.1.2.2 9-Story SMF Building <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | C.1.2.3 20-Story SMF Building <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | C.2 Summary of Steel Moment Frame Results <\/td>\n<\/tr>\n | ||||||
279<\/td>\n | AppD: Concrete Moment Frame Studies D.1 Concrete Moment Frame Baseline Designs <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | D.1.1 Low Seismicity Zone (SDC Bmax) \u2013 RC Ordinary Moment Frame Design D.1.1.1 4-Story OMF Building <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | D.1.1.2 8-Story OMF Building D.1.1.3 12-Story OMF Building <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | D.1.2 High Seismicity Zone (SDC Dmax) \u2013 RC Special Moment Frame Design D.1.2.1 4-Story SMF <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | D.1.2.2 8-Story SMF <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | D.1.2.3 12-Story SMF <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | D.1.2.4 20-Story SMF <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | D.2 Summary of Reinforced Concrete Moment Frame Results <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | AppE: Results of Quality Control Review E.1 Overview of Quality Control Review E.2 Results from Quality Control Review E.2.1 Torsional Studies <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | E.2.2 Concrete Shear Wall Studies <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | E.2.3 Steel Moment Frame Studies <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | E.2.4 Concrete Moment Frame Studies <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | AppF: Global Behavior of Buildings with Mass Irregularity [V2] F.1 Background <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | F.2 Expanded Design Space and Assessment Method F.2.1 Expanded Design Space <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | F.2.2 Assessment Method for Global Behavior F.3 Findings <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | F.4 Recommendations <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | AppG: Story Stiffness and Strength Calculation <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | G.1 Background <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | G.2 Calculation of Story Stiffness G.2.1 Simple Hand Calculations and Their Limitations <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | G.2.2 SEAOC Story Drift Ratio Method <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | G.2.3 Apparent Story Stiffness Method <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | G.3 Calculation of Story Strength <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | G.4 Recommendations G.4.1 Calculation of Story Stiffness G.4.2 Calculation of Story Strength <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | AppH: Steel Systems Not Specifically Detailed for Seismic Resistance H.1 Background <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | H.2 Configuration H.3 Proportioning H.3.1 Strong-Column\/Weak-Beam Requirement H.3.2 Panel Zone Proportioning <\/td>\n<\/tr>\n | ||||||
339<\/td>\n | H.3.3 Connection Design Philosophy H.4 Member Local Buckling and Lateral Bracing Requirements <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | H.5 Less Stringent Material Specifications and Inspection Requirements <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | Symbols <\/td>\n<\/tr>\n | ||||||
345<\/td>\n | Glossary Definitions <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
361<\/td>\n | Project Participants FEMA Oversight ATC Management and Oversight Project Technical Committee Project Review Panel <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | Working Group <\/td>\n<\/tr>\n | ||||||
363<\/td>\n | Workshop Participants <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | Catalog No. 18166-1 <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" FEMA P-2012, Assessing Seismic Performance Irregularities<\/b><\/p>\n |