{"id":458067,"date":"2024-10-20T09:54:44","date_gmt":"2024-10-20T09:54:44","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-clc-iec-tr-631612024\/"},"modified":"2024-10-26T18:25:28","modified_gmt":"2024-10-26T18:25:28","slug":"bsi-pd-clc-iec-tr-631612024","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-clc-iec-tr-631612024\/","title":{"rendered":"BSI PD CLC IEC\/TR 63161:2024"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | European foreword Endorsement notice <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative) Normative references to international publications with their corresponding European publications <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 4 Risk based quantitative approach 4.1 General 4.2 Sequence of steps in functional safety assignment <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4.3 Reference information 4.3.1 General Figures Figure 1 \u2013 Sequence of steps in functional safety assignment <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 4.3.2 Accident scenario 4.3.3 Hazard zone 4.3.4 Severity of harm <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 4.3.5 Safety control function 5 Quantified parameters of a functional safety assignment 5.1 General 5.2 Parameter types 5.2.1 General 5.2.2 Probability 5.2.3 Event rate <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 5.3 Probability of occurrence of harm 5.4 Quantification of risk 5.5 Target failure measure <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 5.6 Probability of occurrence of a hazardous event \u2013 Pr <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.7 Exposure parameter \u2013 Fr <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5.8 Probability of avoiding or limiting harm \u2013 Av 5.8.1 General 5.8.2 Vulnerability (V) <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.8.3 Avoidability (A) 5.9 Demand types and related event rates 5.9.1 Event classes <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.9.2 Demand and demand rate 5.9.3 Initiating events and rate of initiating events IR <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5.9.4 Safety demands and safety demand rate DR <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.9.5 Tolerable risk limit \u2013 Parameter L(S) Figure 2 \u2013 Protection layers, event rates and their relation <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 5.10 Additional parameters <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Table 1 \u2013 Parameters overview <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6 General principle of functional safety assignment 6.1 Basics 6.1.1 Applicability to complete functions 6.1.2 Risk relation 6.1.3 Logical independence of parameters 6.2 High demand or continuous mode of operation <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.3 Low demand mode of operation <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 7 Assignment of the demand mode 7.1 Demand mode \u2013 General <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure 3 \u2013 Hazard rate according to the Henley \/ Kumamoto equation <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 7.2 Assignment criteria 8 Relation to ISO 12100 <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 9 Tools for functional safety assignment 9.1 General Figure 4 \u2013 Elements of risk according to ISO 12100 <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 9.2 Selection of independent parameters 9.3 Logarithmizing parameters 9.4 Discretization of parameters <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 9.5 Parameter scores Figure 5 \u2013 Discretization of parameters <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 9.6 Scoring methods in strict sense <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Annex A (informative)Examples of SIL assignment tools numerical analysis A.1 General A.2 Assignment of score values to parameter entries <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | A.3 Extraction of tolerable risk limits <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure A.1 \u2013 Extraction of tolerable risk limits <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | A.4 Risk matrix of IEC 62061 Figure A.2 \u2013 Risk matrix based on IEC 62061 <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure A.3 \u2013 Maximum allowable PFH as function of the score sumfor the different severity levels <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Figure A.4 \u2013 Representation by a continuous numerical interpolation <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | A.5 Risk graph of ISO 13849 Figure A.5 \u2013 Risk graph of ISO 13849-1 <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Table A.1 \u2013 Relation between PLs and ranges in PFH <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | A.6 Risk graphs for low demand mode of operation Figure A.6 \u2013 Interpolation per severity level <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure A.7 \u2013 Risk graph for low demand mode of operation <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure A.8 \u2013 Risk graph for low demand mode of operation \u2013from Figure 7 of VDMA 4315-1 <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Assignment of safety integrity requirements. Basic rationale<\/b><\/p>\n |